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1 The Preliminaries

1.1 Notations

Mathematics is a language and like any other language comes with a set of rules
and shorthand notations. While I will try and keep use of these abbreviations
to a minimum we should all understand the following.

1.2 Basic logic

If P and @ are two statements, then P = () means that if P is true, then Q is
true. In this case, we say that P implies Q.

For instance, if = is odd, then = # 2 or if Ron is a cat, then Ron is not a
dog.

If P= Q and Q = P, then we write P < @, we say P is true if and only if
@ is true. For instance, z is an even prime if and only if x = 2.

The symbol V should be read as “for all”. The symbol 3 should be read as
“there exists”, 3! should be read as “there exists a unique”.

1.3 Set notation

Let S and T be two sets.

If s is an element of S, then we write s € S and similarly s ¢ S is used to
denote that s is not a member of S. For instance 2 € Z and % ¢ 7.

If S has finitely many elements, then we say that S is a finite set. We write
|S| to denote the cardinality of S i.e. the number of elements in S.

The standard way of writing a set is to specify what the elements look like
and then what properties they have. We do this with braces {, } and | the latter
should be read as such that. For instance, {z € Z | 2 divides z}, this is the set
of even integers.

If the set is finite, then we can just write the elements out. For instance,
{0,1,2,3,4,5} is the set containing the first five natural numbers. This is equiv-
alent to writing {n e N |0 < n < 5}.

If every object of S is also an object of T', then we say that S is a subset of
Tand write ScT. If ScTand T < S, then S =T.

For the complement of a set S in a set T' we write 7'~ S. This is the set
{xeT|xz¢S}.

The intersection is denoted S n T and is the set {z |z € S and x € T}.

The union of two sets, denoted S U T is the set {z |z € S or x € T}.



The cartesian product of S and T', denoted S x T is the set of ordered pairs
of elements of S and T. Formally, S x T = {(a,b) |a€ S,be T}.

A function f is a mapping from a set S to another set T'. We express this
using the following notation.

f:85->T
z — f(z)
Some examples of this notation:

f: N> N

JJ'—’JIQ

ffR—>R

x — cos(sin(z))
Definition 1.3.1. Let S and T be sets and f: S — T be a map.

e We say S is the domain of f and T is the codomain of f.

e We say that f is the identity is S = T and f(z) = = for all z € S. We
denote the identity by idg.

e We say that f is injective if f(x) = f(y) =z =y.

e We say that f is surjective if given a t € T there is and s € S such that
f(s) =t

e A map is bijective if it is both injective and surjective.

o If Ris aset and g: R — S is a map, then we can compose f and g,
denoted f o g. This is a map from R to T'.

1.4 Relations

Within language we naturally talk about people or objects being related. We
can do this abstractly in the world of sets. A relation on a set is a way of
grouping objects of a set that are similar to one another. The following is the
formal definition, however thinking naively works perfectly well.

Definition 1.4.1. A relation R on a set S is a subset of S x S. One usually
writes aRb if (a,b) € R and says a is related to b.

For instance, a relation on the set Z could be aRb if a is even. A relation on
R is given by aRb if a = b3.
There are certain extra properties that one might wish to put on a relation.

Definition 1.4.2. Let S be a set and R be a relation on S.



e We say R is reflexive if (a,a) € R for every a € S.
o We say R is symmetric if (a,b) € R = (b,a) € R.
o We say R is transitive if (a,b) € R and (b,¢) € R = (a,c) € R.

We say that R is an equivalence relation if it is reflexive, symmetric and transi-
tive. Equivalence relations will usually be denoted by ~

Example. S = R and zRy if and only if 2z = y%.

relation.

This is an equivalence

Example. S = R and zRy if and only if y < 22. This is transitive.
Example. S = Z and xRy if and only if y < 2. This is reflexive and transitive.

Example. S = P(N) and XRY if and only if the smallest element of X is
equal to the smallest element of Y. This is an equivalence relation.

Example. S = Z x Z and (a,b)R(c,d) if and only if a = ¢ and b*> = d*. This
is an equivalence relation.

Example. S = {words in the English language} and wRv if the are synony-
mous. This is reflexive and symmetric.

Example. S = Z and xRy if and only if 2 divides 22 and 2 divides y2. This is
an symmetric and transitive.

Most relations that you can think of will be equivalence relations although
coming up with examples that don’t satisfy at least one of these properties is
not hard.

Definition 1.4.3. Let ~ be an equivalence relation on a set S. Then we define
the equivalence class of x as

[z] ={ye S|z ~y}

Since equivalence relations are reflexive, we see that x € [z], this also tells
us that the union of equivalence classes is the set S.
Using the symmetric and transitive property, it can be shown that either

[z] = [y] or [z] n [y] = &.

Definition 1.4.4. Let S be a set and {X;} be a collection of subsets of S. We
say that {X;} is a partition of S if the following hold:

e Each X, # (7.
e The union of the X is S.
o If i # j, then X; n X, = J.

We have seen that the equivalence classes of an equivalence relation form a
partition. These concepts will appear many times throughout the course so I
recommend becoming familiar with them as quickly as possible.



1.5 Modular Arithmetic

Fix an n € N given any integer m there is a remainder r» when divided by n.
This remainder satisfies the following the inequality 0 < r < n. We call r the
remainder modulo n. This gives a natural equivalence relation on Z:

a ~ b < a—bis divisible by n < a and b have the same remainder modulo n.

We denote the equivalence classes of this equivalence relation by Z/nZ.
There are n equivalence classes [0],[1],...,[n — 1]. We call these equivalence
classes residue classes.

There is a surjective map [-]: Z — Z/nZ given by m — [m]. This map is
clearly not injective, e.g. m, m + n have the same image.

One can describe the residue classes in the following way [m] ={le Z |l =
m + kn for some k € Z}. Using this one can prove the following.

Proposition 1.5.1. Let n € N and a,a’,b,b’ € Z. If [a] = [a'] and [b] = [V],
then [a + b] = [a' + V'] and [ab] = [a'V].

This allows us to define addition and multiplication on Z/nZ by [a] + [b] =
[a + b] and [a] x [b] = [ab].

This definition seems to depend on choice of a € [a] and b € [b] although
the above proposition tells us that if we pick different representatives, then we
obtain the same result.

This addition and multiplication work similarly to that of Z. For instance
there is a zero, i.e. [0] with the property that [a] + [0] = [a] = [0] + [a].

There is also an analogue of unity given by [1]. This has the property that
[1] x [a] = [a] = [a] > [1].

Also notice, similarly to Z, that [0] x [a] = [0] = [a] x [0].

We call a residue class [a] non-zero if [a] # [0].

Some properties that differ from Z are that we can add [1] to itself repeatedly
and eventually get back to [0]. Also if n = rs where 1 < 7,5 < n, then
[r] x [s] = [0]. One property of Z is that if zy = 0, then z =0 or y = 0.

Proposition 1.5.2. For every n € N and m € Z the congruence

mer=1 modn

has a solution if and only if m and n are coprime.

Proof. If m and n are coprime, then by the Euclidean algorithm we can find r, s
such that rm + sn = 1 thus r is the solution to the stated equation.

If there is a solution to the equation, then there is an integer r such that
rm = 14 sn. Thus rm—sn = 1, the greatest common divisor of m and n divide
the left hand side and thus must be equal to 1. Hence m and n are coprime. [

The congruence above can be written as an equation in Z/nZ by [a] X [z] =
[1]. We say that [a] has a multiplicative inverse if there exists a b € Z such



that [a] x [b] = [1]. The above proposition shows that [a] has a multiplicative
inverse if and only if a and n are coprime.

In Q multiplication has the property that for all non-zero rational numbers
q there is a rational number r such that gr = 1. We can examine when this
property holds for Z/nZ. This is the same as asking that n is coprime to
1,2,...,m — 1. This occurs only when n is prime.

Later we will phrase such objects as fields.

Not all objects we meet will come from numbers many will be more abstract
and exotic but these form a very nice class of examples that will appear often
throughout the course.

2 Group Theory

We begin by studying groups in some ways these are the simplest of algebraic
objects. They have a single binary operation which satisfies some additional
properties.

2.1 Binary Operations

Definition 2.1.1. Let G be a set. A binary operation * on G is a map *: G X
G — G. We write a = b for the image of (a,b).

A binary operation is a way of defining a multiplication on a set. It takes in
2 elements of the set and outputs a third. You are already familiar with several
binary operations, although they may not be familiar in such terminology.

Examples.
1. Addition, +, on the sets N, Z, Q, R.
2. Subtraction, —, on the sets N, Z, Q, R.
3. Multiplication, x, on the sets N, Z, Q, R.
4. Matrix multiplication.
5. Addition of vectors in a vector space.
6. Cross product of vectors in R3.
7. Multiplication of polynomials.

8. Composition of functions R — R.

Non Example. Division, +, in R. This is not a binary operation as 1 = 0 is
not defined.

Many of the binary operations you have met satisfy the property of being
associative.



Definition 2.1.2. A binary operation is associative if
ax(bxc)=(axb)=*c
Hence, the expression a * b * ¢ has a well defined meaning.
Exercise. Which of the above binary operations are associative?

With associativity we can drop all brackets from expressions, i.e. aj * ag *
-+ % a, has a well defined meaning.
Another nice property that one might care about is commutativity.

Definition 2.1.3. A binary operation is commutative if
axb=>b=a.
Exercise. Which of the above binary operations are commutative?

Definition 2.1.4. An element ¢ € G is an identity for the binary operation
if, for any a € G,
axe=a=ex*a.

Exercise. Which of the above binary operations have an identity? What is the
identity in these cases?

Proposition 2.1.5. If a binary operation has an identity e, then it is unique.
Proof. Let e; and ey be identities, then the following equalities hold:

€1 % ey = €y as e is an identity.

el * ey = e as ey is an identity.
So e; = es. O

Definition 2.1.6. If a binary operation # has an identity e € G and a € G,
then b € G is said to be an inverse of a if

ax*b=e¢=b=*a.

Proposition 2.1.7. Let = be an associative binary operation on a set G with
an identity e and let a € G. Then an inverse of a, if it exists, is unique.

Proof. Let b, c € G be elements such that a+b = e = cxa. Consider the element
of G given by c*a* b on since cxa =e, e xb = b and * is associative we arrive
at cxaxb=>b. Also, since a*b = ¢, cxe = ¢ and = is associative we arrive at
the equality c*a+b=c. Thusb=c*a=+b=c. O

Notation 2.1.8. We denote the inverse of a, if it exists, a .

Let G be a set and let * be a binary operation on G. If H is a subset we
can restrict = to H to obtain a map *: H x H — G. This will not usually be a
binary operation on H. If the binary operation restricts to a binary operation
on H, then we say H is closed under *.

Examples. nZ and N



2.2 Group Axioms

Definition 2.2.1. A group (G, #) consists of a set G and a binary operation =
on G satisfying the following axioms.

e The binary operation #* is associative.
e There is an identity element e € G.
e For each a € G, there is an inverse, a~!, for a.

Remark 1. When the binary operation # is clear from context we will simply
write “G is a group” as a shorthand for “(G,*) is a group”

When verifying that (G, ) is a group we must check the three axioms above
as well as the fact that = is a binary operation on the set G. This is sometimes
to referred to as closure of the operation.

As in basic algebra we regularly suppress * in notation. Thus, a = b is simply
written as ab.

Let n be an integer. We will use the following shorthand:

TT...T n >0,
;V_/
n times
n

' =<e n =20,
ezt el n<o.
-

—n times

One can quickly check that the following come directly from the axioms of
being a group.

Proposition 2.2.2. Let x,y be elements of a group G and let n, m be integers.

1. (zy) t =yt .

n .m n+m

2. 2"z =2

3. (z™)™ = g™

4. If xz = xy, then z = y.
5. If zx = yx, then z = y.

Proof. Exercise O

Definition 2.2.3. We say that a group (G, #) is abelian if = is a commutative
binary operation. L.e. zy = yx for all z,y € G.

Example. The set Z,Q, R, C with addition as a binary operation form abelian
groups. In each case e = 0 and 7! = —2.

Example. The sets Q ~ {0}, R ~ {0} (C ~ {0} with multiplication form abelian

groups. In each case e =1 and 7" = Z.



Example. The set (0,00) of positive real numbers under multiplication forms
a group. Once again e =1 and 27! = %

Example. Any vector space with the operation of vector addition forms a
group.

Example. The set of real invertible n x n matrices under matrix multiplication
form a group. This group is the general linear group GL,(R).

There are many other interesting groups of matrices, here are a few.

Example. The set of real n x n matrices with determinant 1 under matrix
multiplication. This is the special linear group SL, (R).

Example. The set of n x n orthogonal matrices under matrix multiplication
forms the group O(n). (Recall a matrix A is orthogonal if A= = AT))

Example. The set of n x n orthogonal matrices with determinant 1 under
matrix multiplication forms the group SO(n).

Example. The set Z/nZ forms a group under addition.

Example. The set of elements coprime to n in Z/nZ forms a group under
multiplication.

Example. We can look at symmetries of objects. For instance the triangle or
a rectangle.

Example. Given any set S we can look at the set of bijections S — S. This
forms a group denoted Sym(S).

Finally we can build new groups from old ones by taking direct products.

Theorem 2.2.4. Let (G,*g) and (H,*p) be groups. The the operation = on
G x H given by

(9,0) = (¢", 1) = (9%c ¢',hxu )
is a group operation. The group (G x H, *) is called the direct product of G and
H.

Proof. The binary operation = is associative since both *¢ and =g are associa-
tive.

The identity for = is (eq,en) where eq is the identity in G and egy is the
identity in H.

The inverse of the element (g, k) is the element (¢!, h™1).

Thus the operation * satisfies the three axioms of a group and (G x H, *)
forms a group. O

10



2.2.1 Cayley tables

Let G be a group. Each g € G gives a map from «,: G — G given a,4(h) = gh.
We can record this information in a table with G rows and G columns. In this
(g, h) place we put gh. Since gh = gh’ implies that h = b’ we see that each row
has every element of G exactly once. Similarly each column has each element
of G exactly once.

An n x n grid filled with n symbols such that each symbol occurs once in
each column and each row is called a Latin square. You have probably come
across Latin squares in the form of Su Doku or other number puzzles.

Not all Latin squares correspond to groups but when they do they are re-
ferred to as Cayley tables.

Lets look at some examples.

We have already seen the group Z/5Z = {[0],[1],[2],[3],[4]} and we can
write the Cayley table as follows:

[ [o] 1] [2] [3] [4]
(o] | fop (1] 21 3] [4]
([ 21 (31 [4] [0]
(21 2] B8] [4 [o] []
(31 | [3] [4] [o] [i] [2]
(41 | (4] [o] [1 2] [3]

Table 1: A Cayley table for Z/5Z.

Non Example. Given 5 elements x,y, z,t,e we can get the following Latin
square which does not correspond to any group.

e xz y =z t
ele =z y 2z t
r|lx e t y =z
yly t z e
zZlz y x t e
t |t 2z e T vy

How do we know this doesn’t correspond to a group. Since ty = e, we have
that t = y~! in a group this would imply that yt = e however the table tells us
that yt = x.

We can deduce many things about a group from its Cayley table. Firstly
we can see if the group is abelian. If the elements of the group are labelled x;,
then the (7, 7)-th position of the Cayley table is z;z,;. Thus we can see if the
group is abelian by checking that the (7, j)-th entry and the (j,7)-th entry are
the same. Alternatively we can see if the Cayley table is symmetric about the
leading diagonal.

Definition 2.2.5. We say that two Cayley tables are equivalent if there is a
way to reorder the elements of the group such that the rows and column of one
are the same as the rows and columns of the other.

11



Later we will formalise this to the notion of isomorphism but this will do for
now.

Proposition 2.2.6. If two Cayley tables are equivalent, then the groups they
represent are the same with the elements reordered.

This allows us to assume that the first column and row correspond to the
identity element of the group.

Let us look at Cayley tables for a group of with 3 elements, let us label these
elements {e, z,y}.

We can start filling it out to get the following.

T

)
Ty

° 8 oo

a

Y

Let us now consider the entry labelled by o in the above table. This cannot
be z or y since they already appear in that column or row respectively. So we
see that this entry must be e and we get the following,

We now know that the o in the above table must be y and this allows us to
fill in the rest of the table to obtain:

This may not be a table which represents a group however if we compare it
to the table for Z/3Z i.e.

- [[o] 1] [2]
0] | fo] 1] [2]
(1| 021 [
(21 ] [2 1] [0]

We see that the table above does indeed represent a group. In particular
there is only one group with 3 elements.

Let us look at groups with 4 elements {e, x,y, 2}. Once again the first row
and column are easy and we start with,

12



e 8 0
ey o0

We now have a choice for the zy entry, it can be either e or z. Let us begin
with the case that it is e. We also know that if zy = e, then yz = e. So we get,

e x Yy z
ele =z y =z
r|lax 7 e 7
yly e 77
z |z 7 7 7

Since there is an e in each column and row, we see that 22 = e. Also focusing
on the third row and column we see that yz = zy = x. We now get,

e x Yy =z
ele =z y =z
x|z 7T e 7
yly e 7 x
z|lz 7 x e

We can now deduce the rest to obtain

e T Yy =z
ele =z y =z
Tl 2z e y
yly e z «x
zlz y =z e

If we now replace e with [0],  with [1], ¢ with [3] and z with [2] we obtain
the table for Z/47Z.

- [[o] (1] [3] [2]
(o] | fo] [} 3] [2]
(1| 1] 21 [o] 3]
(31 | 3] [0] [2] [1]
(211 [21 3] [ [0]

We see that this is certainly the table for a group and is in fact the table for
Z7/47.

Now we return to the case that xy = z. Since zy = e if and only if yz = e,
we also know that yz = z. We obtain the following

‘ e x Yy =z
ele =z y =z
r|lx 7T z 7
yly =z © 7
z |z 7 7 7

13



We now once again have two options. Either 22 = e or 22 = y. Let us begin
with the case that 22 = y filling in the obvious blanks we obtain the following.

e 8 0
N g O®
o N 8|8
IRESERSARS
RS

We also see that zy = z and from this we can finish the table.

e T Yy =z
ele =z y =z
x|l Yy z e
yly z e «x
z|lz e x y

Once again we can ask if this is a group table and indeed by relabelling e as
[0], x as [1], y as [2] and z as [3] we once again obtain the table for Z/4Z.

3]
-~ [ fo] [1] [2] [3]
(o] | [0] [1] [2] (3]
(| [ 2] B8] [0]
(2] | [2] [3] [o] [1]
(31 | 31 [0] [1] [2]
We now have one more case xy = z and z? = e, we also deduce that
xz =y = zx we obtain the following
‘ e T Yy =z
ele = y =z
r|lx e z Yy
yly =2z 7 7
zlz y 7 7

We now once again split into two options. If we let y> = z, then we can
replace to once again obtain the table for Z/4Z again. If we let y? = e we obtain
the following;:

e 8 0
ne 8 olo
e w0 8|8
82 0w <
D8 wln

This is a fundamentally different group but is the same as the group of
symmetries of a rectangle discussed earlier. This group is known as the Klein 4
group. What we have seen is that all groups with 4 elements are abelian.

14



2.2.2 Cyclic groups

Definition 2.2.7. A group G is cyclic if there is an element g € G such that
G={¢"|keZ}.

Such a ¢ is called a generator for G.
Cyclic groups form and important class of groups.

Example. The group Z is a cyclic group with generator 1 or —1.

Definition 2.2.8. The cardinality |G| of a group G is called the order of G.
We say that a group is finite if |G| is finite.

Definition 2.2.9. The cyclic group of order n, C,,, is the group with elements

n—1

679’927"'79

which satisfy g™ = e. Thus the multiplication is defined by

g'ti ifo<i+j<nmn,
gt ifn <i+j<2n—2.

Definition 2.2.10. Let g be an element of a group G. The order of g is the
minimal n > 0 such that g™ = e. If no such n exists we say that g is of infinite
order.

We denote the order of g by o(g).

Lemma 2.2.11. Let g be an element of a group with finite order. Then gF =
gk—o(g)_ AZSO, gk — gk-‘ro(g)'

Proof. Exercise. Key ingredient: ¢°(9) = e, O

Theorem 2.2.12. Let g be an element of a group. Then g* = e if and only if
o(g) divides k.

Proof. For one direction, if o(g) divides k, then k& = p(o(g)). Thus, ¢* =
(90(9))17 — P — .

For the other direction, if g* = e, then using Lemma [2.2.11|we can repeatedly
add or subtract o(g) from k to obtain [. Thus [ has the following properties:

o g8 =g
o | =k+q(o(g)) for some q € Z.
e 0< ! <o(g).

Since o(g) was minimal among n such that n > 0 and ¢" = e, we see that [ = 0.
Thus, 0 =k + ¢(o(g)) and k is divisible by o(g). O

Proposition 2.2.13. If g is an element of a group G, then the order of g is
the size of the set {g* | k € Z}.

15



Proof. Suppose that ¢g has infinite order, we will show the set is infinite. It
contains the subset {g* | k € N}. Suppose that two elements of this set are
equal i.e. there are positive integers k, [ such that g* = g'. We can assume that
k <1. So g% = g!g7% = e. Thus contradicting g having infinite order. Thus
the set {g¥ | k € Z} is an infinite set.

Suppose now that g has finite order. By Lemma [2.2.11| we can replace any
power of g with g' such that 0 <1 < o(g). Thus {¢* | ke Z} = {g* |0 < k <
o(g)} so we have that |{g* | k € Z}| < o(g). Suppose there were two numbers
0 < k,1 < o(g) such that g* = g'. Then g*~! = e we may assume that k —1 > 0.
Thus, 0 < k — I < o(g) so by minimality of o(g) we have that kK — = 0. Thus,

{g" 10 <k <o(g)}| = o9). D
Corollary 2.2.14. If G is finite, then o(g) is finite for all elements g € G.
Proof. The set {g* | k € Z} is a subset of G which is a finite group. O

2.2.3 Dihedral groups

Let n > 3 be an integer. Let P be the regular n-gon in the plane with center at
(0,0) and a vertex at (0,1). The first few are depicted below

(0,1) (0,1) 0,1)

Definition 2.2.15. The n-th dihedral group D, is the group of linear maps f
from R? to R? such that f(P) = P. This is the set of symmetries of a regular
n-gon. This is a group since:

e The identity map is in D,.

e The composition of two such maps is in D,,.
e The inverse of such a map is in D,

e Composition of functions is associative.

Let us carefully study some small cases. First consider the case n = 3.
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Let r be the rotation clockwise by 2?7' and let s be the reflection in the dashed
line through (0,1) and (0,0). We will also label the vertices 1,2, 3. We have the
following six symmetries

e,r, 12, 5,18, 15,

These are all different since they each do different things to the vertices. In fact,
they give the following permutations:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
12 3)°\2 3 1/°\3 1 2)’\1 3 2)’\2 1 3)’\3 2 1/°

In fact, since these are the only possible permutations of the vertices, these must
be all the elements.

In the case n = 4, we similarly let 7 be the rotation clockwise by 5 and s as
before. We now have the following 8 elements along with the permutation they
induce on the vertices

1 4 [
=1 4) "7 \2
1 4 (1
5—1 2,7”5—2

Once again we can see that these are 8 different elements. However, it is
harder to see that these are all the elements as there are 4! = 24 permutations
of the vertices. We do however have the following.

N W N

=N NN
W w wWww
=W e W
W =
N
=
[\v]
®
|
Y
wW =
DN DN
— W
NN
~_
=
w
v
Il
Y
B~ =

Proposition 2.2.16. There are 2n elements of D,,.
Furthermore, let r be the rotation clockwise through an angle of 27” Let s be

the reflection through the y-axis. Then D, consists of the elements
e,r,...,r" s rs, ..., r" s,
Proof. Labelling the vertices of the regular n-gon with the numbers 1,...,n we

see that any element of D,, send the vertex labelled 1 to any other vertex. Once
one has decided where 1 goes then there are 2 choices for where the map sends
2. Once the images of 1 and 2 are chosen, then the image of 3 is decided since
this must be adjacent to 2 but cannot be the image of 1. Similarly the image
of all the other vertices are decided. This gives at most 2n elements of D,,.

To check that there are in fact 2n elements, consider the list of elements

given by e,r,...,r" ! s,rs,...,r" 5. One can check that these elements send
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the vertices labelled 1 and 2 to any choice of 2 adjacent vertices in the polygon
P. Thus these are all 2n possible choices of map. O

Proposition 2.2.17. The following identities hold in D,,.

ro=e€
5226
n—1 —1

Proof. One can simply check that the maps above are as stated. O

2.3 Symmetric groups

Definition 2.3.1. Let S be a set. A bijection f: S — S is called a permutation
of S and the set of all permutations of S is called Sym/(S).
If n is a positive integer, then we write S,, for Sym({1,2,...,n}).

Theorem 2.3.2. Let S be a set.

1. Then Sym(S) is a group, where the binary operation is composition of
functions.

2. The order of Sy, is n!l.
3. If |S| > 2, then Sym(S) is non-abelian.

Proof. For the first point it is clear that the composition of two bijections is a
bijection, thus this is binary operation on Sym(S). Composition of functions is
an associative operation. The map idg is the identity for this operation. We
proved on Problem sheet 1 Q3, that any bijective map has an inverse. Thus
Sym(S) is a group.

For a bijection f on {1,2,...,n}, we have n possibilities for f(1). For f(2) we
have n — 1 choices since we can choose any element which isn’t f(1). Repeating
this we make n! choices. Thus there are n! elements of S,,.

To show that it is not Abelian consider the permutation ¢ which exchanges
1 and 2 and the permutation 7 which exchanges 2 and 3. It is easy to check
that o o 7(1) = 2 while 7 0 (1) = 3. Thus, they are different permutations and
S, is non-abelian for n > 2. O

We have already written some permutations when we looked at the dihedral
groups. One way to write the permutation o is as follows.

1 2 e n
o) o(2) ... on)
We will improve on this notation shortly.

Example. The group S5 consists of two elements.
1 2 1 2
1 2 2 1
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Example. We have already seen the group S3 although we have seen it as a
different group, namely, D3. It consists of the 6 permutations,
3
1)

1 2 3\ /1 2 3 1 2 3 1 2 3 1 2 3 1 2
1 2 3)’\2 3 1)’\3 1 2/’\2 3 1)J’\2 1 3)’\3 2
Example. Set
(123 456) , (1234
1146523775 2114
in Sg. Determine a3y, 37! and the order of ~.
(1 2 3 45 6\ ,., (1 23 456

Proof--afy = (426351>’ﬁ - (326415) and
o(y) =2

We will now try and simplify the notation of permutations allowing argu-
ments to be more succinct. We will first need the idea of a cycle, this is a special
type of permutation.

D Lt
w ™
N
2
Il
aoumny
[N
— N
D W
(G2 TN
= Ut
w
N

Definition 2.3.3. A permutation o is a cycle if there are distinct elements
ai,...,ar such that

o(a;) =aip for 1 <i<k  o(ar) =a

and
o(x) =z for x ¢ {a1,...,ax}.

The length of such a cycle is k and we call o a k-cycle.

To denote the k-cycle we write (aj as ... a). Note that this notation is not
unique, we could also write (azas ... aray), in fact, there are k ways to write
this cycle.

Two cycles (a1 ... ax) and (by ... b;) are disjoint if a; # b; for all ¢, j.

Proposition 2.3.4. Disjoint cycles commute.

Proof. Let « be the cycle (a1 as ... ag) and 8 be the cycle (b1 by ... b;). Let us
now consider S(a(i)). There are three possibilities.

1. i€ {a1,aq9,...,ar} suppose i = a;. In this case a(i) = a(a;) = aj41 or a1
of j = k. Now consider S(a;41). Since these are disjoint permutations we
see that 3(a;41) = a;+1. The reasoning is similar for a.

2. i€ {b1,ba,...,b;}. Suppose the i = b,,. Since the permutations are disjoint
we see that «a(i) = a(b,,) = by,. Now we compute 8(by,) = bye1 or by
depending on whether m = [ or not.

3. Finally assume i ¢ {a1,...,ax,b1,...,b;}. In this case a(i) =i and (i) =
. Thus f(a(i)) = i.
Now check what happens when we compose the other way. I.e. compute

a(B(4)). Once again there are three cases, computing as above we get the
same answer.
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O

Theorem 2.3.5. Every element of S,, can be expressed as a product of disjoint
cycles. Such an expression is uniquely determined up to the ordering of the
cycles and the notational redundancy within each cycle.

Proof. Let o be an element of S,,. Choose any i1 € {1,...,n}. We can now
construct a sequence of elements of {1,...,n} starting with ¢; by repeatedly
applying o:

7:17 7:27 i37 ey

so that i; = 0(i;_1) for j > 2. This sequence must involve repetitions. Suppose
that the kth term is the first one which is a repetition. In other words, i; has
already appeared earlier in the sequence but the earlier terms themselves have
each appeared for the first time. If 4, = ¢; with j < k and j # 1 then we get a
contradiction because two different elements ¢;_;,4,—1 map to i;. Therefore it
must be the case that i, = i1.

In this way we see that ¢ involves the k — 1-cycle

(il . ik—1)~

If necessary we can repeat this starting with an i} € {1,...,n} which does not
appear in the first cycle. We now obtain a second cycle and it must be disjoint
from the first because ¢ is a permutation. Continuing in this way we obtain a
disjoint cycle representation of o. O

For brevity, we will remove cycles of length 1.

Example. We can now write «, 8, from above as
a=(2452)(36),8=(1563),y=(12)(36)(45).

Definition 2.3.6. As a consequence of the above theorem, the lengths of the
various cycles of a permutation are well defined. This is known as the cycle type
of the permutation.

Proposition 2.3.7. Let 0 = p1p2...pg be an expression for o as a product of
disjoint cycles of length ly,...,li. Then the order of o is lem(l,...,lg).

Proof. Since disjoint cycles commute we see that ¢™ = pip5 ... pr. So for this
expression to be the trivial element we see that pj* must be trivial for all . The
order of an [ cycle is [. Thus p} is trivial if and only if /; divides n. Thus o™ is
trivial if and only if /; divides n for all n. The smallest such positive number is
the lowest common multiple of (I1,...,1). O

Proposition 2.3.8. Let k < n. Then there are

n!
(n—k)k

cycles of length k in S,.
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Proof. There are n choices for the first element, then n—1 choices for the second
element and so on. This gives (n%'k), However since the order only matters up
to cyclic permutation we can see that we have over counted by k. Thus we
obtain that the number of k-cycles is

n!
(n— k)&’
O
Example. How many permutations are there of each cycle type in Sg?
Cycle type Number of permutations
(1,1,1,1,1,1) 1

(2,1,1,1,1) 15
(2,2,1,1) 45
(2,2,2) 15
(3,1,1,1) 40
Proof. (3,2,1) 120
(3,3) 40
(4,1,1) 90
(4,2) 90
(5,1) 144
(6) 120

O

If you forgot the numbers in the permutation and just remembered the cycle
type. This ideas is captured by conjugacy in the symmetric group.

Definition 2.3.9. Two permutations o, 7 are conjugate if there is a permutation
p such that 7 = pop~!. We say that p conjugates o to .

Lemma 2.3.10. Any two k-cycles are conjugate. In fact, given the cycle T =
(a1 az ... ax) we can show that oto~! = (o(a1) o(az) ... o(ay)).

Proof. Exercise O

Theorem 2.3.11. Two permutations are conjugate if and only if they have the
same cycle type.
Proof. Let 0 = 01 ...0), where o; and o; are disjoint. Assume that 7 is conjugate
to o, so there is a p such that pop~' = 7. Then pop~! = poy...opp™ ! =
poip tpoap~t. .. porp~t. By the above lemma poip~! is a cycle with the same
length as o;. Also we can see that po;p~! is disjoint from pajp_1 so we have
written 7 as a product of disjoint cycles with the same lengths as those for o.
Thus they have the same cycle type.

Let 0 and 7 be permutations with the same cycle type. First write o as
a product of disjoint cycles o0 = 01 ...0; and 7 as a product of disjoint cycles
T =Ty ...Tk, where o; and 7; have the same length. Define p as the permutation
which sends that j-th element of o; to the j-th element of 7;. The lemma above
shows that pop~! = 7. O
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Example. Find a permutation that conjugates (12)(34)(5678) to (58)(27)(1643).

Proof. The permutations (15)(283)(47)(6) is a permutation that has the de-
sired effect. O

Definition 2.3.12. A transposition is another name for a 2-cycle.
A permutation is said to be odd (respectively even) if it is a product of an
odd (respectively even) number of transpositions.

Theorem 2.3.13. Every permutation can be written as a product of transposi-
tions.

Proof. Since every permutation is a product of disjoint cycles, it is enough to
show that each cycle can be written as a product of transpositions. This is
certainly the case as (ajas ... ax) = (a1 az2)(azas) ... (ag—1 ag). O

Theorem 2.3.14. There is no permutation which is both even and odd.
Proof. content... O

Remark 2. Note that cycles of even length are odd permutations and cycles of
odd length are even permutations.

The above is somewhat annoying but parity has similar properties to addi-
tions of odd and even numbers.

Proposition 2.3.15. Let 0,7 € S,,. Then
e [fo,T are even, then ot is even.
e if 0,7 are odd, then o is even.
e if 0 is odd and T is even, then oT is odd.
e if 0 is even and T is odd, then o7 is odd.
Proof. This follows from the definitions of even and odd. O

Proposition 2.3.16. The set of even permutations form a group, called the
alternating group, denoted A,,.

Forn = 2 the order of A, is %’

Forn =4 A, is non-abelian.

2.4 Subgroups

Definition 2.4.1. Let G be a group. A subset H < G is a subgroup if the group
operation * restricts to H to make H a group. That is H is a subgroup of G if:

1. ee H,
2. if g,h € H, then ghe H,
3. ifge H, then g' € H.
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If H is a subgroup of G, then we write H < G.
Example. A, is a subgroup of S,.

Proposition 2.4.2. Let G be a group. Let H be a subset. Then H is a subgroup
if and only if H is non-empty and whenever g,h € H, then gh™' € H.

Proof. We must check the three conditions of the above definition.

Firstly since H # & there is a a € H. Setting ¢ = a = h we see that
aa"t =ee H.

We now move onto the third point. Let a € H we have already shown that
ee H. So taking g = e and h = a we see that ea™! =a~' € H.

Now that we know that a=' € H for all a € H. Given a,be H let ¢ = a and
h=0b"1. Then a(b=!)"! =abe H.

Thus H satisfies the three axioms of being a subgroup. O

Example. The subgroups of S3 are

{e} {e; (12)}, {e, (23)}, {e, (13)}, {e, (123),(321)} = A3, Ss.

Example. The subgroups of D, are

{e}, {e,r?}, {e, s}, {e,7s}, {e,r%s}, {e, 135},

{e,r, r2, ’I“S}, {e,rs, r2, r3s}, {e, s, r2, 7“25}, Dy.

Example. The subgroups of Cg are

{e}, {e, 93}’ {e, 923 94}7 Cé.
The only subgroups of Cs5 are {e} and Cs.

Proposition 2.4.3. Let G be a group and H, K subgroups of G. Then H n K
s a subgroup of G.

Proof. Exercise O

Definition 2.4.4. The subgroup generated by a set S , denoted {(S), is the
smallest subgroup containing S. L.e. (S) = (\gcy H where H is a subgroup of
G.

If g € G, then we write (g) rather than the more cumbersome ({g}).

If (S) = G, then the set S is called a generating set for G.

Theorem 2.4.5. The subgroup {S) is equal to the set
H={weG|w=s{"sy>...s;" wheres; € S,e; € {—1,0,1}}.

Proof. Since any subgroup is closed under products and inversion. Since sub-
groups are closed under taking products and inverses we see that H is contained
in any subgroup containing S. Thus H < {S).
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To see the other direction we must show that H is a subgroup. H contains
the identity by setting k& = 0.

We now check that H is closed under taking inverses. To see this let w e H,
then w = s{'s5? ... s3* and w™! * which is also an element of
H.

Finally, we must check that it is closed under taking products. Let w,v €
H. Then w = s{'s3*...s;" and v = t‘flth ...til where s;,t; € S and €;,0; €
{~1,0,1}. Then wv = s§'s5> ... s 5 .. .til which is also an element of H.

Thus (S) ¢ H and the proof is complete. O

— —€1 ,—€2 -
=5, '8,

Example. Determine (S) in each of the following cases:

1. G =7 and S = {16, 56}.

2. G=Ssand S ={(12)(34),(13)(24)}.
E;ample. Show that if G is abelian and g, h € G, then {g,h) = {g"h™ | n,m €
Z}.

Proof. By the above Theorem we can see that (g,hy = {gm™*h"1g™2 ... h"}.
Since the group is Abelian we know that gh = hg. Thus we can replace this word

by a word where all the ¢’s are on the left. We obtain that {g"*h"1 g™2 ... h"™ =
gm1+"'+mkh”1+"‘+nk. ]

Proposition 2.4.6. Let G be a group and g€ G. Then {g) = {g* | k € Z}.

Proof. The proof is the same as above, noting that we can combine powers of
g- O

Definition 2.4.7. The order of an element g € G, denoted o(g), is the smallest
integer n > 0 such that g™ = e. If no such integer exists, then o(g) = 0.

Proposition 2.4.8. If o(g) is finite, then {g) = {e,g,...,g° 9~}

Proof. We can always replace g* with a representative from this set by adding or
subtracting o(g). Thus we can see that (g} < {e,g,...,¢°@~1}. This completes
the proof since the other inclusion is clear. O

We can now redefine what it means to be a cyclic group. G is cyclic if and
only if there exists a g € G, such that G = (g).
Remark 3. Note that in a finite group G = (g) if and only if o(g) = |G].

Theorem 2.4.9. Let G be a cyclic group and H a subgroup of G. Then H is
cyclic.

Proof. f H = {e}, then H is cyclic and generated by e. Suppose that H # {e}.

Let g be a generator for G. So G = {g). Define [ = min{n | n > 0g™ € H}.
Since H contains an element other than e. We see that ¢ € H for some m.
Thus ¢g~™ is also in H and we can see that [ is well-defined.
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We will now show that H = {(g'). Since g' € H we see that (g') = H. Suppose
that g™ € H. Then we see that g™*! = g™g' € H and g™~ = g™(g')~' € H. So
we can find an a such that a = m+bl, 0 < a <[ and g* € H. By minimality of
[ we see that a = 0 and m = —bl. Thus this element was in (g'), this completes
the proof. O

Proposition 2.4.10. Let m,n be non-zero integers. By Theorem[2.4.9 we have
that
(m,ny =<hy — <my ndny =)

for some h,l € Z. Then h and l have the following properties:

1. h|n and h | m,

2. ifx|n and x| m, thenz | h

3. there exists u,v € Z such that un + vm = h.

4. m|landn|l,

S5 ifm|xandn|x, thenl|x.

Proof. We can rephrase the property that ¢ divides j by j € (i).

The first property follows since (m) < {(m,n). So m € (h). Similarly for n.

The third part follows since h € {m,n) and so h = un + vm by definition of
{myn).

The second part now follows. Assume m = ax and n = bxr. Then h =
un + vm = ubx + var = x(ub + va) and the result follows.

For the fourth part, since | € (m) n {n) we see that (m) and [ € (n).

Finally if z € ¢m) and z € {(n), then x € (m) n {(n) = (h). This completes
the proof. O

Definition 2.4.11. By definition A is the greatest common divisor and [ is the

lowest common multiple.

2.5 Lagrange’s theorem

Recall that the order of an element g is the minimal n > 0 such that g" = e. If
no such n exists, then we say g is of infinite order.

Definition 2.5.1. Let H be a subgroup of a group G.
Then the left cosets of H in G are the sets

gH = {gh | he H}.
The right cosets of H in G are the sets
Hg={hg| he H}.
Notation 2.5.2. We write G/H for the set of left cosets of H. The cardinality
of G/H is the indezx of H in G.
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Note that different elements g1, go can represent the same left coset. IL.e.
91H = g2 H yet g1 # ga.
In general, gH # Hg, there are certain special cases where this will be true.

Example. Let G = S3 and H = {e, (12)}. Then

eH = (12)H ={e,(12)}, He=H(12) = {e, (12)},
(13)H = (132)H = (13),(132),  H(13) = H(123) = (13),(123),
(23)H = (123)H = (23),(123),  H(23) = H(132) = (23),(132).

Lemma 2.5.3. Let H < G and g,k € G. Then gH = kH if and only if
g 'ke H. Similarly Hg = Hk if and only if kg~ € H.

Proof. Suppose that gH = kH. Since k € kH = gH we see that k = gh for
some h € H. Thus h = g~k and so g~k € H.

Suppose now that g~'k € H note that k~'g € H as well. Let a € gH. Then
a = gh for some h € H. We have the following chain of equalities.

a=gh=g(g ' k)(k'g)h=k(k~'g)h.

Since k~1g € H, we see that this is of the form kh' where b/ = (k~'g)h € H.
Thus gH < kH. The proof of the other inclusion is the same.
The statement about right cosets is left as an exercise. O

Remark 4. This allows us to put an equivalence relation on G by making g ~ h
if and only if g7'h € H. The equivalence classes of this relation are the left
cosets of H.

From the examples that have been given so far you may have noticed that
in the case where G is finite and H < G, we have that |H| | |G|. This is not a
coincidence! The following theorem is known as Lagrange’s theorem.

Theorem 2.5.4. Let G be a finite group and H < G. Then the order of H
divides the order of G.

Proof. By the above remark we see that the cosets are equivalence classes of an
equivalence relation. Thus, the cosets partition the set G. We must now prove
that |H| = |gH| for all g € G. The map ¢: H — gH given by ¢(h) = gh is a
bijection. Indeed it has inverse ¢: gH — H, given by 1 (gh) = h.

Since we have a partition we can see that |G| = X peq/m |9H| = Xypecm [1H| =
|G/H||H|. This completes the proof.

The converse of Lagrange’s theorem is false in general. However, we will see
some partial converses to Lagrange’s theorem.

Example. Find all the subgroups of Cs3;, D5 and C5 x Cs.
Proposition 2.5.5. Let G be a finite group. Then o(g) divides |G| for all g € G.

Proof. We know that |{g)| = o(g). We also know that {g) is a subgroup, thus
the previous theorem completes the proof. O
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Corollary 2.5.6. Let g be an element of a finite group. Then !¢l = e.

Proof. Since g = e if and only if o(g) divides k. The above theorem shows that
G — O
g e.

The converse of this is obviously false. Otherwise this would imply that
every finite group is cyclic.

Corollary 2.5.7. Let G be a group such that |G| = p where p is prime. Then
G is cyclic.

Proof. In a group there is only one element of order 1, namely e. If |G| = p,
then any element has order 1 or p. Thus we can find an element of order p.
This element is thus a generator for G. O

Definition 2.5.8. Let (Z/nZ)* = {[a] | ged(a,n) = 1}. This is called the group
of units of Z/nZ. This is a group with operations [a] = [b] = [ab].

It is clear that this is associative, the identity is [1] and by proposition 1.5.2
we have inverses.

The following two theorems are very useful in cryptography. The first is
known as Fermat’s little theorem and was proved by Fermat in 1640.

Theorem 2.5.9. Let p be a prime number and a € Z be an integer such that p
does not divide a. Then
a®1'=1 mod p.

Proof. Since the group (Z/pZ)* has order p — 1. Thus for any element g we
have that g?~! = [1]. O

The second is an extension of this proved by Euler. It requires Euler’s phi
function which counts the number of integers coprime to n.

Definition 2.5.10. Euler’s p-function is defined to be the number of integers
0 < i < n such that ¢ and n are coprime.

The following allows one to calculate ¢(n) we will not prove it here.
Theorem 2.5.11. Euler’s p-function satisfies the following three properties.

e For prime numbers p, o(p) =p—1,

e For prime numbers p, p(p*) = pF — pF~1,

e If n,m are coprime integers, then p(mn) = @o(m)p(n).

We are now ready for Euler’s theorem from 1736.

Theorem 2.5.12. Let a,n be integers such that a and n are coprime. Then

a?™ =1 mod n.
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Proof. The key point here is that the order of (Z/nZ)* is ¢(n). O

The key point of this section is see the power of defining an equivalence
relation on a group. We can define another equivalence relation by xRy if z = y
or ¥ =y~ 1. This allows us to prove the following two theorems.

Corollary 2.5.13. Ifp is a prime, then (p —1)! = —1 mod p.

Proof. Consider the elements of (Z/pZ)* which satisfy the identity [z]? = [1].
This is the same as saying that [z — 1][z + 1] = [#? — 1] = [0]. We have seen
that the product of two non-zero elements is non-zero. This this equality tells
us that [z — 1] = [0] or [z + 1] = [0]. Thus [z] = [1] or [z] = [—1]. Thus in
the product every element pairs with an inverse except for [1] and [—1] and we
conclude that [(p — D)!] = [-1]. O

Corollary 2.5.14. Let G be a group of even order. Then there is an element
of order 2.

Proof. Exercise O

2.6 Homomorphisms and isomorphisms

In linear algebra we have a natural notion of map between vector spaces, namely
that of a linear map. In group theory we have the following,

Definition 2.6.1. Let (G,*g) and (H,*g) be groups. A map ¢: G — H is
called a homomorphism if o(z *g y) = ¢(x) =g p(y) for all z,y € G.

A bijective homomorphism is called an isomorphism. If there is an isomor-
phism ¢: G — H, then we write G =~ H.

Much like vector spaces isomorphism gives an equivalence relation on the
class of groups.

Proposition 2.6.2. Let G be a cyclic group. If G is finite, then there is an n
such that G = Z/nZ. If G is infinite, then G = Z.

Proof. Suppose that |G| = n and G is cyclic generated by g. So G = {e, g,9°,... 9" '}.
Define a map ¢: G — Z/nZ given by ¢(g*) = [k]. This is an isomorphism.

Suppose that G is infinite and generated by g. Then define a function
©: G — Z given by ¢(g*) = k. This is an isomorphism. O

Definition 2.6.3. Two integers m, n are coprime, if ged(m,n) = 1.

Theorem 2.6.4. Let m,n be coprime integers. Then Z/mZ x Z/nZ is isomor-
phic to Z/mn’Z.

Proof. Consider the order of the element ([1],[1]). The k-th power of this
element is ([k], [k]) which is the trivial element if and only if m and n both
divide k. Thus the order of ([1],[1]) is the lowest common multiple of m and
n. If m and n are coprime, then the lowest common multiple is mn. Thus the

group is cyclic as o([1],[1]) = |Z/mZ x Z/nZ|. O
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With other theorems we have seen we can now classify all groups of order
up to 7.

Theorem 2.6.5. Up to isomorphism, the groups of order < 7 are:
o Order 1: {e}.
o Order 2: 7/27.
e Order 3: 7/37.
e Order 4: ZJAZ or 7/27 x Z/27Z.
e Order 5: 7/57.
e Order 6: Z/6Z or Ds.
e Order 7: Z)77Z.

This situation becomes much more complicated for larger orders. There are
already 5 groups of order 8. We have seen 4 of these groups: Z/8Z,Z/AZ x
Z)27,7)27 x 7./2Z x 7,/27 and Dy4. The last group is Qs.
Definition 2.6.6. The quarternion group Qs is the set {+1, 4, +j, £k} with
the multiplication defined by > = j2 = k> = —1 and ij = k, jk = i,ki =
joijk = —1.
Definition 2.6.7. An automorphism is an isomorphism from G to G.

A endomorphism is a homomorphism from G to G.

An injective homomorphism is called a monomorphism.
A surjective homomorphism is called a epimorphism.

It is easy to check that the composition of two homomorphisms is again a
homomorphism. This also shows that the composition of two isomorphisms is
and isomorphism. Thus much like the symmetric groups we can form a group
of automorphisms.

Definition 2.6.8. Let GG be a group. We define the automorphism group of
G to be Aut(G) = {¢: G — G | ¢ is an isomorphism}. This is a group with
composition as the group operation.

Lemma 2.6.9. Let ¢: G — H be a homomorphism. Then the following hold:
e vleg) =eq.
e p(g") = (p(9)"
o o(g7") = (e(9)"

Proof. Exercise O

Proposition 2.6.10. Let G and H be group and ¢: G — H be a homomorp-
shism. Then o(p(g)) divides o(g) for all g € G. Moreover if ¢ is an isomorphim,

then o((g)) = o(g)-
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Proof. Removed for grading purposes. O
Example. The map Z — Z/nZ given by k goes to [k] is a homomorphism.

Example. If H is a subgroup of G, then the inclusion map i: H — G given by
i(h) = h is a homomorphism.

Example. For any groups G and H. The map ¢: G — H given by ¢(g) = ep
is a homomorphism. This is called the trivial homomorphism.

Example. Let G and H be groups. Then the maps
m:Gx H—G m1((g,h)) =g

and
m: Gx H—>H m2((g,h)) = h

are homomorphisms.
Example. The map det: S, — {1,—1} given by

det(c) 1 if o is even,
g =
—1 if o is odd.

is a homomorphism.
Example. The map det: GL,(R) — R is a homomorphism.
Example. The maps trace: M, (R) — R is a homomorphism.

Example. The map log: (0,00) — R is a homomorphism. Moreover it has an
inverse exp: R — (0,0) so it is in fact an isomorphism.

Example. The map ¢: R — C \ {0} given by ¢(z) = €** is a homomorphism.

Example. The map ¢: C \ {0} — R ~ {0} given by ¢(z) = |z| is a homomor-
phism.

Definition 2.6.11. Let G be a group and a € G. We can associate to a the
map 0,: G — G given by 0,(g) = a~*ga. This is known as conjugating by a.

Given g, h € G we say that g and h are conjugate if there is an a € G such
that h = 6,(g).

Proposition 2.6.12. Conjugation by a is an isomorphism for every a € G.

Proof. The function is a homomorphism since 8,(gh) = agha™! = (aga=!)(aha™1) =
0a(g9)0a(h). We can also see that it is bijective since it has an inverse, namely
Op—1. O

Corollary 2.6.13. If g and h are conjugate, then o(g) = o(h).
If g and h are conjugate, then g~! and h™! are conjugate.
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Similarly to linear maps we have a notion of kernel and image. In linear
algebra these are subspaces in group theory, unsurprisingly, these are subgroups.

Definition 2.6.14. Let ¢: G — H be homomorphism between two groups.
The kernel of ¢, written ker(y) is

ker() = {g € G [ w(g) = en}.
The image of ¢, written Im(yp) is
Im(p) ={he H|3ge G s.t. o(9) =h}.

Proposition 2.6.15. Let ¢: G — H be a homomorphism. Then ker(p) < G
and Im(p) < H.

Proof. We must check the three axioms of a subgroup in each case.

We can see that ey = p(eg) € Im(ip).

Given h,h’ € Im(p) suppose that h = ¢(g) and b’ = ¢(¢’). Then hh' =
e(9)e(g’) = »(g9g') € Im(e).

Finally given h € Im(y) suppose h = ¢(g), then h™t = ¢(g)~ = ¢(g71) €

Im(¢p).

We proceed similarly for the kernel. Since p(eg) = ey, we see that eg €
ker(¢).

Suppose that g, ¢’ € ker(p). Then ¢(g¢') = ¢©(g9)p(9’) = emen = ep, thus

99’ € ker(p).
Similarly suppose g € ker(p), then p(g7') = ¢(9)~' = ez’ = ey. Thus
gt € ker(p). O

Example. The map ¢: Z — C,, given by k — ¢* has kernel nZ and image C,,.
Example. The map det: S, — {1, —1} has kernel 4,, and image {1, —1}.
Example. The maps det: GL,(R) — R has kernel SL, (R) and image R.

We end our discussion here with a first step to proving the first isomorphism
theorem.

Proposition 2.6.16. A homomorphism ¢: G — H s injective if and only if
ker(p) = {eg}.
Proof. Suppose that ¢ is injective, then ¢(g) = ey = ¢(eq) tells us that g = eq.
Thus ker(p) = {eg}.

Assume that ker(p) = {eg}. Suppose that ¢(x) = ¢(y) then we have the
following sequence of equivalences:

p(x) = o(y)
= p(2) " o(y) = en
< 1y € ker(y)
< ly = eq
= T =y.
Thus we see that ¢ is injective. O
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The above proof actually showed that if ¢(z) = p(y), then 271y € ker(y).
Thus we have the following corollary.

Corollary 2.6.17. A homomorphism is constant on cosets of ker(y) and takes
different values on different cosets.

2.7 Normal subgroups and quotients

In this section we will talk about quotient groups. These form some of the key
ideas in group theory. They have the downside of begin very abstract, so don’t
worry if this isn’t familiar first time round.

Recall, that if G is a group and H < G, then G/H is the set of left cosets of
H in G.

Definition 2.7.1. Let H be a subgroup of G. Then H is a normal subgroup,
denoted H <1 G, if for all g € G we have

Hg =gH.

One can say that H is normal if left cosets and right cosets agree.
WARNING: This does not mean that hg = gh for all g€ G and h € H.

Proposition 2.7.2. The following are equivalent:
1. H is normal in G.
2. ghg ' € H for allhe H and all g€ G.
3. g *hge H forallhe H and all g€ G.

Proof. The last two conditions are equivalent since the map g — g~ ! is a bijec-
tion.

We will show that the first and second are equivalent.

To see that the first implies the second. Let h € H and g € G. Since
gH = Hg, we see that gh = h'g for some b/ € H. Thus ghg~' = I/ € H. This
proves the second statement.

Suppose that ghg™" € H for all h € H,g € G. Then ghg~' = A’ and so
gh = h'g. Thus gH < Hg. Switching the roles of A and h’ we see the other

inclusion. O

There are always 2 normal subgroups of any group G. These are G and {e}.
If there are no other normal subgroups, then G is called simple.

Proposition 2.7.3. If H is a subgroup of G and |G/H| = 2, then H is a normal
subgroup.

Proof. Exercise O

Definition 2.7.4. Let G be a group. Then the centre of G, denoted Z(G), is
the set
Z(G) ={g€ G| hg = gh for all he G}.
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Proposition 2.7.5. Let G be a group. Then Z(G)< G.

Proof. Tt was proved on the midterm that Z(G) is a subgroup of G. To see that
it is normal note that hgh™! = g for all g € Z(G) so it is certainly normal. [

Proposition 2.7.6. Let ¢: G — H be a homomorphism. Then ker(phi) < G.

Proof. To see that the kernel is a normal subgroup. Let k € ker(y) and g € G.

Consider ¢(gkg™") = @(9)p(k)p(9)~" = ¢(g)ep(g)”' = e. Thus gkg™' €
ker(p) and so ker(y) is normal. O

One could try and define a binary operation on the set G/H by defining g1 H *
goH = g1goH. However one must check that it does not matter which choice of
g1 and go are used. This is the key reason for defining normal subgroups.

Proposition 2.7.7. Let H < G. Then the binary operation g1 H*goH = g1 g2 H
s well defined if and only if H is normal.
If H is a normal subgroup of G. Then (G/H, %) is a group.

Proof. Suppose that H is normal in G. Let g¢tH = k1H and goH = koH.
To show that * is well defined we must show that g1goH = kiksH. This is
equivalent to the saying that g;lgflklkzg € H. Since goH = koH we see that
go = koh for some h € H. Thus gz_lgl_lklkg € H is equivalent ot gglgflklkgh €
H which is the same as g;lgflklgg € H. Since k1H = g1H we see that
gflkl € H. Thus since H is normal we see that g;lgflklgg € H and = is well
defined.

Suppose that = is well defined. Then since hH = H for all h € H. We
see that hH * gH = hgH = gH = H % gH for all g € G. This is the same as
¢ 'hg € H which is equivalent to H being normal.

To see that (G/H, =) is a group we check the three axioms. The operation =
is associative since the operation in G is associative. The identity is the coset
H. The inverse of gH is the coset g~1H. O

Definition 2.7.8. If H < G, then (G/H, *) is the quotient group.

Proposition 2.7.9. Let G be a group and H < G. Then H< if and only if it
is the kernel of some homomorphism.

Proof. The function ¢p: G — G/H given by ¢(g) = gH is a homomorphism.
The kernel is exactly {g € G | ¢(g) = H}, this is the same as {g € G | gH =
H}={g9geG|ge H} = H. Thus H is the kernel of a homomorphism. O

Example. Let G =Z and H = nZ. H is a normal subgroup of G. We can see
that the quotient G/H = {nZ,1+nZ,...,(n—1) +nZ}. This can naturally be
identified with the integers modulo n, or the cyclic group of order n.

Example. Let G = S,, and H = A,,. Then G/H = {A,,(12)A,} = Cs.

Example. Let G = C* and H = {z € C | |z| = 1}. Then G/H = (0,0).
Essentially we have forgotten the argument of the complex number and just
remembered the modulus.
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Example. Let G = AGL,(R), denote the group of affine linear transforma-
tions. Le. functions R — R™ which are of the form x — Az + b where
A€ GL,(R) and b € R"™. Let T be the subgroup consisting of translations, that
is the subgroup where A = id.

T is a normal subgroup of G. And G/T = GL,(R).

2.8 Isomorphism theorems

Understanding quotient groups can be hard, especially understanding them in
the abstract. To make this study easier, we have the first isomorphism theorem.
This allows us to identify a quotient with a certain image in another group.

Theorem 2.8.1. Let G and H be groups and ¢: G — H be a homomorphism.
Then G/ ker(p) = Im(yp).

Proof. We define a function ®: G/ker(¢) — Im(p) by ®(gker(y)) = ¢(g). We
must prove four things, firstly that the map ® is well defined, secondly ® is a
homomorphism, thirdly & is injective, fourthly ® is surjective.

To see that @ is well defined we must check that if gker(y) = hker(p), then

©(g9) = ¢(h).

gker(p) = hker(p)

= g~ h e ker(yp)
= plg th) =e
= o(g) = ¢(h)

Thus we see that the function is well defined.
To see that it is a homomorphism we see that ®(ghker(¢)) = p(gh) =

?(9)p(h) = (g ker(p))®(hker(p)).
We must now check that it is injective. Suppose that ®(gker(y)) = ®(hker(p)),

then we get the following chain of implications.

N
5
QI
=
|

Thus @ is injective.
Finally it is clear it is surjective since given h € Im(yp) we see that h = ¢(g)
for some g € G and so ®(gker(y)) = ¢(g) = h. O

This theorem can sometimes allow us to understand quotient groups via
instead understanding subgroups which are the image of a homomorphism.
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Corollary 2.8.2. Let p: G — H be a homomorphism. Assume G is finite.
Then |G| = [im(i)| x | ker(p)].

Example. For det: S,, — {—1,1}, the above reads that S, /A, =~ Cs.

Example. For det: GL,(R) — R*. The isomorphism theorem reads
GL,(R)/SL,(R) =~ R*.

Example. For the projection onto the first coordinate G; x G3 — G;. The
isomorphism theorem reads that (G; x G2)/({e} x G2) = G.

Example. For ¢: Z — Z given by ¢(z) = nz, the isomorphism theorem reads
that Z = Z/{0} = nZ.

Example. For ¢: Z — C,, given by ¢(k) = ¢*, the isomorphism theorem tells
us that Z/nZ = C,,.

3 Automorphism groups

Let G be a group. Then we can consider the set Aut(G) = {¢: G — G | ¢ is an
isomorphism}.

Theorem 3.0.1. Aut(G) is a group where the binary operation is composition.

Proof. This operation is associative, since composition of functions is associa-
tive.

The identity element is the function idg.

Since each isomorphism is a bijection we see that there are inverses which
are also bijections. One can also see that the inverse will satisfy the property
of being a homomorphism. O

We call Aut(G) the automorphism group of G.
Example. For a natural number n the group Aut(Z/nZ) = (Z/nZ)*.

Example. The automorphism group of Z is {+1}. We can see this since any
automorphism must send 1 to +1.

There is a natural map ©: G — Aut(G). This assigns to a group element a,
the function 6,. This is the function which conjugates by a, i.e. 0,(g) = aga™!.
This function is a group homomorphism. It’s image is denoted Inn(G). It

is easy to check that the kernel of this homomorphism is exactly Z(G).

Example. The automorphism group of Ss is S3. Every automorphism is of the
form 6, for some a € S3.

This is in fact true for all the symmetric groups except Sg.
One can use symmetric groups to better understand quotients. We have the
following theorem.
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Theorem 3.0.2. Let G be a group and ¢ € Aut(G). Let N be a normal subgroup
of G. Let K = {¢(g) | g€ H}, then G/N = G/K

Proof. Define a function a: G — G/K by a(g) = ¢(g9)K. It is easy to see that
this is a homomorphism and is surjective. The kernel of this homomorphism
can be calculated as follows:
ker(a) = {g€ G | a(g) = K}
={9eGle(gK = K}
={geGleplg) e K}
= N.

We can now appeal to the first isomorphism theorem to complete the proof. [

This will help immensely in the next section.

3.1 Finitely generated Abelian groups

Throughout this course we have attempted to classify groups. Earlier we saw
that we are able to classify all groups of order < 8. The classification theorem
for finite groups is a deep problem. We begin with an easier problem, namely
classifying the finitely generated abelian groups. The arguments that follow are
essentially based in linear algebra and row reduction for matrices.

Definition 3.1.1. A group G is finitely generated if there is a finite set S < G
such that G = {S).

Example. Any cyclic group is finitely generated.

Example. Any finite group is finitely generated. The set G satisfies the prop-
erty in the definition.

Example. The group Z xZ is finitely generated where the set S is {(1,0), (0,1)}.

Non Example. The group R is not generated since any finitely generated
group is countable.

Non Example. Q is not finitely generated.
Proof. Exercise O

We will be proving the following classification result.

Theorem 3.1.2. Let G be a finitely generated Abelian group. Then G = 7" x
ZJd\Z % - x L)diZ where d; > 1 and d; divides d; 1.

Assume that G is a finitely generated abelian group with generating set
{g1,--.,9n}. Then there is a homomorphism ¢: Z™ — G given by (i1,...,i,) —
gil ... gi». This homomorphism is surjective.

Let K be the kernel of this homomorphism. By the first isomorphism the-
orem G is isomorphic to Z"/K thus if we can understand the subgroups of Z"
we can understand the finitely generated abelian groups.
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Lemma 3.1.3. Let G1,G2 be groups. Let Hy < Gy and Hy < Gy. Then Hy X
Ho< Gl X GQ and (Gl X Gz)/(Hl X Hg) = Gl/Hl X GQ/HQ.

Proof. We define a homomorphism ¢: Gy xGy — G1/H1 xGa/Hs by ¢((g1,92)) =
(g1H1,g2H2). The first isomorphism theorem tells us that Im(p) =~ G x
Go/ ker(p).

It should be clear that this map is surjective. Thus we must compute the
kernel.

ker(¢) = {(g1,92) | ¢((91,92)) = (H1,Hz)} By definition of the identity in Gy /H; x G2/Ho
=1{(91,92) | g1H1 = Hy, g2 Hy = Ho} By definition of ¢.
={(91,92) | 91 € H1, 92 € Hs} Since g; H; = H; if and only if g; € H;.
= Hi x Hs.

e~ o~ o~

O

Let H be the subgroup of Z™ given by 4/Z x l3Z % - - - x 1,7, i.e. the subgroup
where the first coordinate is divisible by /; and the second coordinate is divisible
by Iy etc. We get the following corollary.

Corollary 3.1.4. Z"/(WZ % -+ x [, Z) 2 Z/3Z % --- x L)1, Z

To prove the above theorem we will show that given a subgroup of Z™ there
is an isomorphism which send it to a subgroup of the form I1Z x - - x [,Z.

Proposition 3.1.5. Any subgroup of Z™ is finitely generated (by at most n
generators).

Proof. We will prove this by induction. For the base case we have already seen
that any subgroup of a cyclic group is cyclic.

Let H be a subgroup of Z". Define F = {a; | (a1,a2,as,...,a,) € H}.

There are two cases depending whether F' = {0}. Suppose that F' # {0}.
Then there is an element of F' which is positive. Let f be the minimal such
element, the first entry of every element of H is divisible by f, otherwise, we can
use the Euclidean algorithm to find a smaller such f. Let b = (f,bs,...,b,). Let
(a1,...,ay) € H, then (ay,...,an) = s(f,ba,...,by)+(0,a0—sba, ..., a,—sb,).

Let N be the subset of H where the first entry is 0. Le. N = {(a1,az,...,a,) €
H | ag = 0}. We can see that this is a subgroup of H and that the set
{(az,...,an) | (0,a2,...,a,) € H} is a subgroup of Z"~!. By induction this
is generated by, at most, n — 1 elements. We can then take these generators
and add b to get a generating set for H. Thus H is generated by, at most, n
elements. O

Theorem 3.1.6. Let H be a subgroup of Z™. There is an isomorphism which
takes H to a subgroup of the form 4Z x - -- x 1,Z. Where l; divides l;11.

Note that this accounts for the case the latter I; are 0.
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Proof. Let T be the generating set for Z™ given by T = {e;} where ¢e; is an
element with zeroes in each position and a 1 in the i-th position.

Let S be a generating set for H. If S has less than n elements, then we will
add extra generators of the form (0,0, ...,0) so that S has size n.

Let A be the n x n matrix in which the i-th row is the i-th elements of S.
Le. If S = {(a11,--.,a1n), (@21, ..,a21),-..,(@n1,--.,ann)}. Then

a1 ai12 N A1n

a21 as9 e a9n
A= .

Gpl  An2 Apn

We can now apply the following operations
1. Add row ¢ to row j for i # j.

2. Multiply row i by —1.

Switch row ¢ and row j.

Add column 7 to column j.

Multiply column 4 by —1.

SO o

Switch column ¢ and column j.

We will show that with these operations we can change the matrix A into a
diagonal matrix where each entry divide the subsequent entry.

The above operations have the following affects on T = {¢1,...,¢,} and
S = {sl,...,sn}.

1. Replace s; by s; + s;.

2. Replaces s; by —s;.

@

Switch s; and s;.

e~

Replace t; by t; +¢;.
5. Replaces t; by —t;.
6. Switch ¢; and ¢;.

Thus by choosing a new generating set for H and applying an isomorphism ¢ of
7™ we will have transformed to a subgroup where each element of the generating
set is given by an element with at most one non-zero entry. This shows that
O(H)=ULZ x - x1,Z.

We now complete the proof that we can reduce to a diagonal matrix. By
induction, it is enough to show that we can reduce A to a matrix of the form

[ 8 g ] where B is an n — 1 x n — 1 matrix and a divides every entry of B.
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If the matrix is all zeroes, then we are done. Otherwise, switch rows and
columns so that the top left entry is non-zero and has smallest absolute value.
By multiplying the first row by -1 we can assume the top left entry is positive.

We can now add rows and columns to reduce all elements of the first row
and the first column to be non-negative and smaller than the top left entry. If
any element is non-zero switch this to the top left entry and repeat. This will
result in the first row and column being zero except for the first entry. With
this process we can assume that the top left entry is the smallest non-zero entry
of the matrix.

‘We have now reduced to the matrix [ 8 g ] we must show that a divides

every entry of B. Suppose that this is not the case, we can assume by switching
rows and columns that it is the top left entry of B.

In this case add row 1 to row 2. By taking column 1 away from column 2 we
can reduce the (2, 2) element to less than a. We then switch rows and columns
to place this in the top left entry and repeat the above procedure. This process
will only be done a finite number of times since A is an integer matrix. O

Example. Let H be the subgroup of Z? generated by {(15,3,6), (12,24, 12), (18,18, 36)}.
Then A is the matrix given below we apply the operations to get a diagonal ma-
trix.

15 3 6 3 15 6 3 15 6
A=112 24 12 | v | 24 12 12 | v~ | 0 —108 -—36
18 18 36 18 18 36 0 -102 -12
[ 3 0 0 3 0 0 3 0 0
woe | 0 =108 =36 |~ | 0 —-108 =36 |~ | O 12 102
| 0 —102 -12 0 -102 -12 0 —-36 -—108
(3 0 o0 3 0 0 3 0 0
woe | 0 12 102 [ v [ 0O 12 6 we | 0 6 12
| 0 0 198 0 0 198 0 198 0
3 0 0 30 0 3 0 0
we | 0 6 0 wo | 006 0 we |l 0 6 0
| 0 198 —396 0 0 -39 0 0 396

Thus, we see that Z3/H is isomorphic to Z/3Z x Z/6Z x Z/396Z.

4 Group actions

At this point we have met many examples of groups and hopefully many of them
have been interesting to you. Some of these groups can be seen as invertible
maps from a space to itself.

Example. The diherdral group D,, is the group of symmetries of the regular
n-gon.
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Example. The group GL,(R) is the group of invertible linear transformations
from R” — R"™.

Example. The symmetric group is the group of maps from a set of size n to
itself.

Every can be realised as a group of symmetries of some object. This idea
leads us to the group actions.

Definition 4.0.1. A left action of a group G on a set S is a map
p:GxS— 8,
satisfying the following conditions,
e ple,s) =sforall seS.
e p(g,p(h,s)) = p(gh,s) for all g,h e G and s € S.
We have mentioned a few examples above however here are a few more.
Example. Z acts on R by p(n,r) =n +r.

Example. Let V be a vector space and v € V' be a vector. Then Z acts on V'
by p(n,w) = w + nv.

Example. The group S,, acts on a set with n elements by p(o, k) = o (k).
Example. Any group G acts on itself by left multiplication p(g, h) = gh.
Example. Any group G acts on itself by conjugation p(g, h) = ghg™?'.

Example. Any group G acts on P(G) by left multiplication p(g, X) = {9z |
xe X}.

Example. Any group G acts on P(G) by conjugation p(g, X) = {gwzg~' |z €
X}

Example. Let G be a group and H be a subgroup. Then G acts by left
multiplication on G/H via p(g,9'H) = gg'H.

Example. Let G be a group and X be a set upon which G acts. Then there is
an action of G on P(X) via p(g,Y) = {p(g,y) |y Y}.

A profitable way of understanding groups is via their actions.
Given a group G and an action of G on a set S. We can associate to each
group element g a function

pg: S — 8
s+ p(g,s)

Since p is an action of G on S we see that pg o pp, = pgn. This allows us to
see that py is a bijection for all g since it has a two-sided inverse, namely pg-1.
Thus, we get a map G — Sym(S).
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Proposition 4.0.2. Let G be a group acting on a set S. Then the function
G — Sym(S)
g — Pg

is a homomorphism.

Proof. We must check that pgn, = pg 0 pn. Let us examine py(pn(s)) foe s € S.
We get the following

Pg(pn(s)) = pg(p(h, s)) By definition of pp(s)
= p(g, p(h, s)) By definition of p,.
= p(gh, s) By definition of a group action.
= pgn(s) By definition of pgp,.

O

This shows us that defining an action of G on S is equivalent to giving a
homomorphism G — Sym(S).

4.1 Orbits and stabilisers
Throughout, let G be a group acting on a set S.

Definition 4.1.1. The orbit of s € S is the set
O(s) = {te S |3g e G such that t = p(g, s)}.
The stabiliser of s € S is the set
Stab(s) = {g € G| p(g,s) = s}.
The fix point set of g € G is the set
Fiz(g) = {s€ 5| p(g,s) = s}.
Example. When S,, acts on {1,...,n} there is one orbit. We also have
Stab(i) = Sym({1,...,n} ~ {i})congSn_1.

Example. Let S, act on the subsets of {1,...,n}. There are n + 1 orbits, each
corresponding to |Y| for Y < X. Let Y be a set of size k. Then

Stab(Y) = Sk X Sn,k.

Example. Let SLy(C) act on Moy (C) via p(A, M) = AMA~L.
Each orbit has a representative of the form

A0
M:[Ou} ApeC
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if the matrix is diagonalizeable or it has a representative of the form

Al

M:[o A

] AeC

if the matrix is not diagonalizeable.

Example. Let S be the set of colouring of the edges of a pentagon red or blue.
There is an action of D5 on S. As there are 5 edges |S| = 25 = 32. There are 8
orbits represented by

BBBBB BBBBR BBBRR BBRBR

BBRRR BRBRR BRRRR RRRRR

Example. When a group G acts on itself by left multiplication i.e. p(g,h) = gh.
There is one orbit. The stabiliser of any element is {e}.

Example. Let G act on itself by conjugation. Then Stab(h) = {g € G |
ghg~! = h}, this is known as the centralizer of h and is denoted Cg(h). The
orbit of h is the conjugacy class of h denoted Cj,.

We call an action with one orbit transitive. We call an action where the
stabiliser of any element is {e} free.
Let G be a group acting on a set A.

Proposition 4.1.2. The orbits of an action partition the set.
Proof. Exercise 0
Proposition 4.1.3. The stabilisers of an action are subgroups.

Proof. Firstly, the identity is in Stab(a) since p(e,a) = a for all a € A.
Given g, h € Stab(a) we have the following.

p(gh,a) = p(g, p(h,a)) = p(g,a) = a.

Thus, gh € Stab(a).
Finally if g € Stab(a), then a = p(g,a). We get the following

~ha) =plgTtplg.a)) = plgT g.a) = ple,a) = a.
Thus, g~* € Stab(a). O
We are now ready to state one of the key theorems about group actions.

Theorem 4.1.4. The Orbit Stabiliser Theorem
Let G be a group acting on a set S and let s € S. Then there is a bijection

®: G/Stab(S) — O(s).

Given by ®(gStab(s)) = p(g, s).
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Proof. There are three steps. First we must show that ® is well defined. I.e. if
gStab(s) = hStab(s), then p(g, s) = p(h, s). O

Corollary 4.1.5. Let G be a finite group, then |Cr| = |G : Cq(h)].

We can now also immediately see that the size of an orbit divides the size
of G.

Example. Determine the number of conjugates of (123) in S5
Proposition 4.1.6. A group of order p" has non-trivial centre.
Proof. Exercise O

Proposition 4.1.7. A group of order p? is isomorphic to either Z/pZ x Z/pZ
or Z/p*Z.

Proof. Exercise 0

Theorem 4.1.8. Cauchy’s theorem
Let p be a prime number dividing |G|. Then there is an element of G of
order p.

Proof. Let A= {(g1,...,9p) € G | g1g2...gp = €}. O

4.2 Orbit Counting

A good use of group actions is understanding how many different ways there are
of achieving a task. For instance in in the following example there are 8 orbits.

Example. Let S be the set of colouring of the edges of a pentagon red or blue.
There is an action of D5 on S. As there are 5 edges |S| = 2° = 32. There are 8
orbits represented by

BBBBB BBBBR BBBRR BBRBR

BBRRR BRBRR BRRRR RRRRR

This is telling us that there are essentially 8 different ways to colour the
edges of a pentagon with two colours.

In this example it is possible to write down the 32 possibilities and check
their equivalences. But for larger problems this is just not viable. Imagine you
were asked a similar question but for a decagon with 6 colours, there are now 60
possible colourings and understanding the orbits can be tricky. Forunately we
have the following theorem, which is usually incorrectly attributed to Burnside
to help with this. We need one lemma first.

Lemma 4.2.1. Let G be a finite group acting on a set S. Suppose that s,t are
in the same orbit. Then |Stab(s)| = |Stab(t)|.
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Proof. Let g € G be such that p(g,s) = t. Let h be an element of Stab(s). Then
we get the following

p(ghg™",t) =

Thus, ghg~! € Stab(t). Similarly we see that for k € Stab(t) we have that
g tkg € Stab(s). Thus we have a bijection of these sets. O

Theorem 4.2.2. Let G be a finite group acting on a finite set S. Let N be the
number of orbits of G. Then

1 )
N = il . |Fix(g)].
geG

Proof. We will consider the set A = {(g,s) € G x S| p(g,s) = s} and count up
|A| in two different ways. Then

4] = > Hse S Tplg,8) = s}l =3 Hoe Gl plg,s) = s}l.

geG seS

The first and second sums respectively equal

Y |Fix(g))  and ) [Stab(s)|.

geG SeS

If the orbits are O1,0,,...,Oy then

N
Z |Stab(s)| = Z Z | Stab(s)| As orbits partition S.

seS i=1s€0;

Using the Orbit-Stabilizer Theorem, this is turn can be rewritten as

N N lel N
D10 IStab(s)| = >, ] o~ Y lGl = NiG|
i=1se€0; i=1s€0; v i=1
Hence
NIG| = )] [Fix(g)]
geG
and the result follows. O
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4.3 A, is a simple group

The purpose of studying quotient groups is the hope that by understanding a
quotient and a subgroup we can put this information together to understand
the group G. One such theorem is the following.

Theorem 4.3.1. Let G be a group. If G/Z(QG) is cyclic, then G is Abelian.

If one has a group and a normal subgroup, then we can quotient out by the
normal subgroup and hopefully have a smaller problem. We use this to break
groups into smaller pieces. There are of course groups which have very few
normal subgroups. For instance we have seen the following,

Theorem 4.3.2. Let p be a prime. The only normal subgroups of Z/pZ are
{[0]} and Z/pZ.

We call groups with this property simple.

Definition 4.3.3. We say that G is a simple group if the only normal subgroups
of G are G and the trivial subgroup.

Simple groups are groups that can’t be broken apart into smaller pieces.
Fortunately, due to a lot of mathematics, simple groups are well understood
and classified.

Theorem 4.3.4. Let G be a finite simple group. Then G is of one of the
following 4 types:

1. Z/pZ for p a prime.

2. Ay forn =5.

8. 16 families of Lie type.
4. 26 sporadic groups.

The proof of this theorem is well beyond the scope of this course.
With simple groups classified one might hope to break groups up into simpler
pieces. We do this with composition series.

Definition 4.3.5. A composition series for a group G is a sequence of nested
subgroups G = Go, G, ...,G, = {e} such that G;;1<G; and G;/G, 41 is simple.

This is the natural notion of breaking a group into smaller pieces. For in-
stance we can see that GG, is a simple group and thus belongs to the list above.
Now if we want to understand G,,_s we can look at G,,_1 and G,,_2/G,,_1, these
are both simple groups and so are on the list. We can put this information to-
gether to get a better understanding of G,,_5 repeating this process we can gain
a better understanding of G.

One thing that is useful to know is that such series exist and that they satisfy
some uniqueness. This is summarised by the following theorems.
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Theorem 4.3.6. Let G be a finite group. Then there exist a composition series

for G.

Theorem 4.3.7. Let G be a finite group. Suppose that we have two compo-
sitions series Go, ...,Gy, and Hy, ..., H, then n = m and the simple groups
appearing are the same up to reordering.

This means that when looking at a group in any decomposition series we
need only understand one set of simple groups.

For the remainder of this section we will focus on proving the alternating
groups A,, are simple.

We start by proving that Ay is simple. This proof really is studying the action
of As on itself by conjugations. Recall that G acts on itself by conjugation via
p(g,h) = ghg™t. Recall, the orbit 7 under this action is called the conjugacy
class of h and is denoted Cy,.

Lemma 4.3.8. Suppose that N is a normal subgroup of G. Suppose that h € H.
Then the conjugacy class of h is contained in N.

Proof. Since N is normal we see that gkg~' € N for all ke N and g € G. In
particular, ghg~! € N for all g € G. Thus the conjugacy class of h is contained
in N. U

Corollary 4.3.9. Let G be a group and N a normal subgroup. Then N is a
union of conjugacy classes.

Proof. By the above lemma, we see that N = UpenCh. O

Thus if we wish to understand normal subgroups we can understand conju-
gacy classes.

Understanding conjugacy classes in Aj is related to understanding conjugacy
classes in S;. We have already seen that two permutations are conjugate if and
only if they have the same cycle type, thus conjugacy in S5 is easy to understand.

We will now look at the size of conjugacy classes in As. To do this we
use the orbit stabiliser theorem and to calculate their size, this requires us to
understand the size of centralisers in As.

To understand the size of centralisers in A; we use the following theorem.

Theorem 4.3.10. Let H be a subgroup of Sp,. Then HNA,, = H of |[HnA,| =
|H]|

T.

Proof. It H ¢ A, then H n A, = H. Suppose that H is not contained in A,.
Let h € H be an element such that h ¢ A,,. Then S,, = A,, U hA,,. We can now
see that H = H n (A, U hA,) = (Hn A,) u (H n hA,). We can also see that
H n hA, = h(H n A,,). Thus we see that H n A, has index 2 in H and thus

|H]|

has size S O
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Now we have this let us examine the various cycle types of permuations in
S5 and their stabilisers.

o Permutations with same cycle type | |Csg, (0)] | Cs, (o)
e 1 120 S5
(123) 20 6 ((123), (45))
(12)(34) 15 8 ((12), (34), (1324))
(12345) 24 5 ((12345))

We can now compute |Cy, (0)| in each case above, this allows us to compute

the conjugacy

class of each permutation in As

o [Cas(0)] | Co]

e 60 1
(123) 3 20
(12)(34) 4 15
(12345) 5 12

We notice that there are 12 5-cycles in the conjugacy class of (12345). This

means that there is another conjugacy class of 5-cycles. This is the conjugacy
class of (21345). We can see that all the conjugacy classes remain the same
except for that of the 5-cycles which split into two conjugacy classes.

o Co|

e 1
(123) 20
(12)(34) 15
(12345) 12
(21345) 12

If there were a normal subgroup of As then it would be a union of conjugacy
classes. Also it would contain e and have order dividing 60. We can see that
taking any union of conjugacy classes with the identity cannot produce these
properties unless we take all the elements of A5 or just the identity. This proves
that As is a simple group.

5 Rings

5.1 Basic definitions

Rings are much like groups except they have two binary operations. While this
may feel like more abstraction you have actually been using rings all your life!

Definition 5.1.1. A ring (R, +, x) is a set R together with two binary operation
+ and x. These operations satisfy the following axioms:

e (R,+) is an abelian group. Since this is an abelian group, we write 0 or
Og for the identity element of this group.

e x is an associative binary operation, i.e. a x (b x ¢)
a,b,ce R.

(a x b) x ¢ for all

o x is distributive over +, i.e. a x (b+c¢) = (axb) +a x ¢, for all a,b,c € R.

47



Notation 5.1.2. We will often drop x in notation, ab for a x b. Much like
when we dropped the * in group theory.

Remark 5. If the operations + and x are clear from context we will just write
R for (R, +, x).

Definition 5.1.3. We say that a ring is commutative if x is a commutative
binary operation, i.e. ab = ba.

Definition 5.1.4. We say that a ring has an identity, if there is an element
1r € R such that 1gr = r = rlg for all r € R. We also require that 1 # Og.

We will study rings that have an identity also we will mostly be interested
in commutative rings although some examples will be non-commutative.
The following simple algebra facts are left as an exercise.

Proposition 5.1.5. Let R be a ring with an identity and a,b,c € R.
e [fa+b=a+c, thenb=rc.
e —(—a) =a.
o 0 x0rp =0 =0g xa.
e —ab = —a(b) = a(-d).
e (—1g)a=—a=a(—1g).

Example. Z,Q,R,C are rings with the usual operations of + and x. In each
case O =0 and 1z = 1.

Example. The ring of integers modulo n is a ring with the standard operations
of addition and multiplication.

Example. Given two rings (R, + g, xg) and (S, +g, Xg). Then the direct sum,
R® S of R and S is the ring with underlying set R x S and

(r,8)+ ('8 =(r +gr',s +5 8
and
(r,s) x (', 8"y = (r xgr',s xg 8.

Example. C(R), the set of continuous functions from R — R is a ring with
pointwise addition and pointwise multiplication. O¢(g) is the zero function and
1wy is the constant function 1.

To prove that this is a ring we need the basic calculus fact that if f, g are
continuous functions, then f + g and fg are continuous functions.

Example. The set of even integers 2Z is a commutative ring although it does
not have an identity.

Example. The set of n x n matrices with real coefficients is a non commutative
ring. It has an identity, namely the identity matrix.
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Example. We can extend the above example to n x n matrices with coefficients
in any ring R. This will be denoted M, (R).

Example. The power set P(X) of a set X with the operations symmetric
difference A and intersection [ forms a commutative ring.

Recall AAB =AN~ Bu B~ A

Definition 5.1.6. Let R be a ring. A subset S of R is a subring if
1. 1p € S,
2. for all r,s,t € S we have that r — st € S.

Equivalently S contains the identity and is a ring with the operations coming
from R.

Example. Z is a subring of Q which is a subring of R which is a subring of C.

Example. Matrices with real coefficients form a subring of the matrices with
complex coefficients.

There are certain elements in a ring which can be of particular interest. The
first is that of a unit.

Definition 5.1.7. A wnit in a ring R is a non-zero element a such that there
exists a b such that ab = 1 = ba.

Units are the elements of a ring which have a multiplicative inverse.

Example. In Z the units are 1, —1. In Q the units are all non-zero elements
this is also true in R and C.

Example. For the ring n x n matrices with real coefficients, the units are the
invertible matrices. We met these earlier in the course as GL,(R).

Example. In the ring C(R) of continuous functions from R to R, the units are
the functions which are never 0.

Nicely we have the following.

Theorem 5.1.8. The units in a ring R form a group under multiplication. This
group is denoted R*.

Proof. Firstly we check that the product of two units is a unit. Let a,a’ be
units. Thus there are b,b’ such that ba = ab = 1g = a’b’ = V/a’. We can then
see that aa’b’b = alpb = ab = 1 also b’baa’ = b'1ga’ = b'a’ = 1. Thus aa’ is
a unit.

The element 1g is a unit and is the identity for this group.

Multiplication is associative since multiplication in a ring is associative.

Finally the inverse of a unit a is the element b such that ab = 1g. O
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We have seen some examples where most elements are units i.e. Q and R.
These rings are known as fields.

Definition 5.1.9. A commutative ring R is a field if every non-zero element is
a unit.

Example. The rings Q and R are fields.
Example. The ring Z; is a field. In fact, Z,, is a field if and only if n is prime.
In the other direction we have zero-divisors.

Definition 5.1.10. A zero-divisor in a ring R is a non-zero element a such that
there is are elements b, ¢ such that ab = 0 = ca.

Example. The zero divisors in Zg are 2, 3, 4.

Example. The zero-divisors in C(R) are the functions which are zero on (a, b)
for some a,b € R.

Example. In P(X) every non-empty set is a zero-divisor.
Definition 5.1.11. A ring which contains no zero-divisors is an integral domain.
Example. The rings Z,Q,R and C are integral domains.

Example. If R is an integral domain and S is a subring of R, then S is an
integral domain.

Example. Any field is an integral domain.
This is a consequence of the following.

Proposition 5.1.12. An element cannot be both a zero-divisor and a unit.
There are Tings with elements that are neither a zero-divisor nor a unit.

Proof. Suppose that a is a unit and also a zero divisor. Thus there are b,c # O
such that ab = 1g and ca = Or. We thus get the following equality cab = 0gb =
Or and also cab = cl,, = ¢ and thus ¢ = O giving a contradiction. O

5.2 Polynomial Rings

Given a ring R we have a well defined notion of addition and multiplication we
can use this to define new rings such as the ring of matrices with coefficients in
R or polynomial rings.

Example. If R is a ring, then we can consider R[z] the ring of polynomials
with coefficients in R. If R is commutative, then R[x] is commutative. If R
has an identity, then R[z] has an identity, namely the constant polynomial 1.
Explicitly given two polynomials p(z) = >}, a;z* and g(z) = >}, b;z'. Then

p(x) + g(x) = Z(ai + b))t p(x)q(z) = Z Z ajbi:zrk.
i k itj=k

We can define polynomials rings in several variables by

Rlxy,...,zn] = R[x1,...,2n-1][z].
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Definition 5.2.1. We say that the degree of a polynomial p(z) = ¥, a;,z’ € R[x]
is deg(p) = max{i | a; # 0}.

Note that, in general, we do not have the equality deg(p(z)q(z)) = deg(p(z))+
deg(q())-

Example. Let R = Zy4[x] and p(z) = ¢(x) = 22 + 1. Then
p(x)q(z) = 42 + 4z + 1 = 1.

But deg(p(z)) = deg(q(z)) = 1 and deg(p(z)q(z)) = 0.
Also note that factorisation is not unique.

Example. The polynomial 22 — 1 € Zg[x] has the following factorisations
2 —1=(x+1)(z—-1)=(x—3)(z—5).

These properties are mysterious at first glance as both are things that natu-
rally work when we consider polynomials with integer or even real coefficients.
In fact we can summarise this failure in terms of the original ring R.

Theorem 5.2.2. If R is an integral domain, then the equality deg(p(z)q(x)) =
deg(p(z)) + deg(q(x)) holds in R[x].

Proof. Let the deg(p(z)) = n and deg(g(z)) = m. Then we can look at the
coefficient p,, of ™ in p(x) and the coefficient g,, of ™ in ¢(x). In the product

. is pr g which i _Z . . . 0
the coefficient of 2™ is hich is non-zero since R is an integral domain
O

Theorem 5.2.3. Let R be a ring. R is an integral domain if and only if R[z]
s an integral domain.

Proof. If R has a zero divisor a, then the constant polynomial a is a zero divisor
in R[z].
The previous theorem shows the other direction. O

The failure of factorisation is a little more complicated and is beyond the
scope of this course cf. unique factorisation domains. Later we will look at the
case of fields.

5.3 Ideals and homomorphisms

From this point onwards all rings will be assumed to be commutative.

In groups we looked at normal subgroups and quotient groups. We will now
look at the analogue of this in rings. The corresponding concept is known as an
ideal

Definition 5.3.1. A non-empty subset I of a ring R is an ideal if the following
are satisfied.
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1. Ifi,j eI, theni—jel.
2. Ifiel and r € R, then ri € I.
If I is an ideal of R, then we write I < R.

Theorem 5.3.2. Let R be a ring and I = R. Then I is an ideal if and only if
I is a subgroup of (R,+) and ri€ I for allr € R,i€ I.

Proof. Exercise. O

Definition 5.3.3. Let R be a ring and a € R. The principal ideal generated by
a, denoted (a) is the smallest ideal containing a. So

(a) ={ra|reR}.
An ideal [ is said to be principal if there is an element a € R such that
I = (a).
Example. The sets {Or} and R are always ideals of R.
Example. The {f € C(R) | f(0) = 0} is an ideal in C(R).
Definition 5.3.4. The ideal generated by {a1,...,ax} is
(@1,...,a5) = {ria1 +raas + - - - + rpag}
is the smallest ideal containing as, ..., ak.

Example. Let R = Z[z] and I = (2,z). This is an example of an ideal which
is non-principal.

Proposition 5.3.5. The ideal in Z are nZ for some integer n.

Proof. Any ideal of Z as a ring is an additive subgroup. The subgroups of Z are
nZ for some n € Z. We must now check that kr € nZ for k € nZ and r € Z. This
should be clear since the elements of nZ are the numbers which are divisible by
n and since k is divisible by n, kr is also divisible by n. O

Proposition 5.3.6. R is a field if and only if the only ideals are {0} and R.

Proof. Suppose that R is a field and I is an ideal. Suppose that I # {0}. Let
a € I be an element such that a # 0. Since R is a field there is a b such that
ab=1. Thus,1e I andsor =1 xre R for all r € R, hence I = R.

Suppose that the only ideals are {0} and R. Then for each non-zero elements
a € R we see that (a) = R since it contains a. Thus, 1 € (a), thus there is an
element b such that ab = 1. Thus a has an inverse and R is a field. O

In groups we could take quotients by normal subgroups to create new groups.
In rings we can do the same thing with ideals.
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Definition 5.3.7. Let R be a ring and I < R be an ideal. The coset of r € R is

r+I={r+iliel}.
R
We denote the set of cosets T

R
Proposition 5.3.8. Let R be a ring and I < R be an ideal. (T’C—B’ ®) forms a

ring, where

Proof. Exercise O

Similarly to our study of groups there is a notion of homomorphism between
rings.

Definition 5.3.9. Let R and S be rings. A map ¢: R — S is a ring homomor-
phism if the following hold,

L ¢(1g) = 1s,
2. Yla+rb) =v(a) +5¥(b),
3. laxrb) =v(a) xs ¢(b).
Example. The map ¢: Z — R given by 1(n) = n is a ring homomorphism.

Example. Let R be a commutative ring with an identity and a € R. Then the
map ¥: R[z] — R given by ¥(p) = p(a) is a ring homomorphism.

Sometimes we will just say homomorphism when it is clear we are talking
about rings.

Proposition 5.3.10. Let R, S be rings andp: R — S be a ring homomorphism.
Let r € R and n be an integer. Then

1. Y(0r) = Og

2. If R has an identity and S is an integral domain, then either 1(a) = 0 for
allae R or ¢(1g) = 1g.

3. p(nr) = ny(r)
4. If n >0, then Y(r™) = ¢(r)".
Proof. Exercise O

Definition 5.3.11. A ring isomorphism is a bijective ring homomorphism. We
say two rings are isomorphic if there is an isomorphism between them. If R and
S are isomorphic we write R =~ S.
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Example. Complex conjugation is a ring isomorphism from C to C.
Once again we have an notion of kernel and image.

Definition 5.3.12. Let R, S be rings and ¢: R — S be a ring homomorphism.
The image of ¢ is the set Im(¢)) = {s € S| s = ¢(r) for some r € R}.
The kernel of ¢ is the set ker(yp) = {r € R| ¢(r) = 0g}.

Proposition 5.3.13. Let R, S be rings and: R — S be a ring homomorphism.
Then Im(v)) is subring of S and ker(v)) is an ideal of R.

Proof. Exercise 0

Example. Let R be a ring and ¢: R[x] — R be the homomorphism given by
¥(p) = p(a). Then ker(y)) = (x — a) and Im(¢)) = R.

Example. The kernel and image of the map v¢: Z — Z,, given by x — I are
ker(y) = nZ and Im(y)) = Z,.

Example. Consider the homomorphism v¢: R[z] — C given by ¥ (p) = p(i).
The kernel ker()) = (2% + 1) and Im(z)) = C.

In groups we had isomorphism theorems which allowed us to understand the
image of a homomorphism through quotients. We have an almost exact replica
of this theorem for rings.

Theorem 5.3.14. Let R, S be rings and let : R — S be a ring homomorphism.
Then

1. ker(v) < R,
2. Im(v) is a subring of S,

R
7 fer@)

Proof. content... O

=~ Im(%)).

Example. Let R be a ring and ¢: R[z] — R be the homomorphism given by

Rlz]

¥ (p) = p(a). Then the isomorphism theorem tells us that ———~ ~ R

G—a)
Example. The isomorphism theorem applied to ¢: Z — Z,, given by (z) = &
/
that — ~ 7Z,,.
says that —

Example. The isomorphism theorem applied to the map ¢: R[z] — C given

R
by ¥ (p) = p(i) tells us that (mz[—f]l) =~ C.

Given 2 ideals there are several operations we can perform to produce a new
ideal.
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Definition 5.3.15. Let R be a ring and I and J be ideals. Then the following
are also ideals.

1. The sum of I and J is

I+J={i+jliel jeJ}.
2. The intersection of I and J is

{rirelandrelJ}.

3. The product of I and J is

IJZ{Zikjk- |ipel,jreJ keN}
k

We say that I and J are coprime if I + J = R.

Example. If m,n are integers and I = (m) and J = (n), then
1. the sum I + J = (hef(m,n)).
2. the intersection I n J = (lem(m,n))
3. the product I.J = (mn).

Thus we can see that the ideal (m) and (n) are coprime if and only if there
highest common factor is 1, i.e. m and n are coprime in the usual sense.

Proposition 5.3.16. Let I and J be ideals. Then IJ < I n J. Moreover if 1
and J are coprime, then IJ =1n J.

Proof. content... O
We are now ready to discuss the Chinese remainder theorem.
Theorem 5.3.17. Let I and J be coprime ideals of a ring R. Then the map

R R
InJ I

) (—B? given by r+InJ—(r+1I,r+J)

s an isomorphism

Proof. content... O
Noting that with the above proposition we get the following corollary.

Corollary 5.3.18. Let I and J be coprime ideals of a ring R. Then

R_RR
J-17J

This is particularly useful in the integers.
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Corollary 5.3.19. If m and n are coprime, then
Given a list of congruences we can find the congruence in a product.

Example. Find x mod 165 given that

=1 modl1l
=2 mod 15

5.4 Prime and maximal ideals

Definition 5.4.1. Let R be a ring. An ideal [ is proper is I < R.
Note that I is a proper ideal if and only if the quotient R/ is non-trivial.

Definition 5.4.2. Let R be a commutative ring. We say that an ideal is prime
if it is a proper ideal and given a,b € R such that abe I, then ae I or b e I.

Prime ideals correspond to nice properties of the quotient R/I. Namely,

Theorem 5.4.3. Let I be a prime ideal in the ring R. Then R/I is an integral
domain.

Proof. Suppose that ab+ I = I. This is equivalent to saying that ab e I. Since
I is prime we see that a € [ or b€ I. This is the same as saying that a + I = 1
or b+ I =1, 1ie. at least one of them is zero in R/I. O

Definition 5.4.4. A proper ideal I is mazimal if for all ideals J with I < J
either I = J or J = R.

Theorem 5.4.5. If I is a maximal ideal of R, then R/I is a field.
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