Algebraic Topology Sheet 3

Robert Kropholler

February 24, 2017

- 1. Show that $\pi_1(X \times Y, (x, y)) = \pi_1(X, x) \times \pi_1(Y, y)$. (Hint: use the projections $X \times Y \to X$ and $X \times Y \to Y$.)
- 2. A retraction of X onto $A \subset X$ is a map $r: X \to A$, such that $r \circ i: A \to A$ is the identity map.
 - (a) Show that there is no retraction D^2 onto S^1 .
 - (b) Show that every map $f: D^2 \to D^2$ has a fixed point. To start you off, suppose that $f(x) \neq x$ for all $x \in D^2$. Use the pairs (x, f(x)) to construct a retraction D^2 onto S^1 , reaching a contradiction. Thus, f must have a fixed point.
- 3. Show the following:
 - (a) \mathbb{R} is not homeomorphic to \mathbb{R}^n , $n \geq 2$.
 - (b) \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n , n > 2.

2 things worth noting. Firstly, the fundamental group is invariant under homeomorphism. Secondly, being path connected is invariant under homeomorphism.

4. (optional) Show that the Mobius strip M does not have a retraction onto its boundary circle.