Sheet 2: Irreducibility and field extensions

Robert Kropholler

February 11, 2019

Let \mathbb{F}_{p} be the finite field with p elements.

1. (a) Prove the rational roots theorem: Let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, and let $p / q \in \mathbb{Q}$ be a rational number in reduced form, i.e. such that $\operatorname{gcd}(p, q)=1$. If p / q is a root of f, then $p \mid a_{0}$ and $q \mid a_{n}$.
(b) Use (a) to prove that $x^{3}+3 x+3$ is irreducible in $\mathbb{Q}[x]$, and conclude that $\mathbb{Q}[x] /\left(x^{3}+3 x+3\right)$ is a field.
(c) Let α denote the image of x in $\mathbb{Q}[x] /\left(x^{3}+3 x+3\right)$. Express each of $1 / \alpha, 1 /(1+\alpha), 1 /\left(1+\alpha^{2}\right)$ in the form $c_{2} \alpha^{2}+c_{1} \alpha+c_{0}$ with $c_{0}, c_{2}, c_{2} \in \mathbb{Q}$.
2. (a) Write down the 4 possible degree 2 polynomials in $\mathbb{F}_{2}[x]$. Which are irreducibe?
(b) Show that if $f(x)$ is a degree 4 polynomial which is reducible, then it either has a root or can be factored as a product of two irreducible quadratics.
(c) Show that $x^{4}+x+1$ is irreducible in \mathbb{F}_{2}.
(d) Show that $5 x^{4}+3 x+7$ is irreducible in $\mathbb{Q}[x]$.
3. Show that the following are irreducible in $\mathbb{Q}[x]$.
(a) $2 x^{4}+15 x^{2}+10$.
(b) $x^{6}+x^{3}+1$.
(c) $x^{4}+4 x^{3}+6 x^{2}+6 x+5$.
4. Let L / K be a field extension where $[L: K]$ is prime.
(a) Show that there are no fields M such that $K \subset M \subset L$.
(b) Show that L / K is a simple extension.
5. The formal derivative $D: K[x] \rightarrow K[x]$ is defined by $D\left(a_{0}+a_{1} x+\cdots+\right.$ $\left.a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$. Prove that if $a, b \in K$ and $f, g \in K[x]$ then
(a) $D(a f+b g)=a D f+b D g$;
(b) $D(f g)=f D g+g D f$;
(c) $D h(x)=D g(x) D f(g(x))$ when $h(x)=f(g(x))$. If $a \in K$ show that
(d) $(x-a)$ divides $f(x)$ in $K[x]$ if and only if $f(a)=0$;
(e) $(x-a)^{2}$ divides $f(x)$ in $K[x]$ if and only if $f(a)=0=D f(a)$.

Deduce that if the polynomials f and $D f$ have no common factors in $K[x]$, then f has no multiple root.

