Sheet 2: Irreducibility and field extensions

Robert Kropholler

February 11, 2019

Let \mathbb{F}_p be the finite field with p elements.

- 1. (a) Prove the rational roots theorem: Let $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$, and let $p/q \in \mathbb{Q}$ be a rational number in reduced form, i.e. such that gcd(p,q) = 1. If p/q is a root of f, then $p|a_0$ and $q|a_n$.
 - (b) Use (a) to prove that $x^3 + 3x + 3$ is irreducible in $\mathbb{Q}[x]$, and conclude that $\mathbb{Q}[x]/(x^3 + 3x + 3)$ is a field.
 - (c) Let α denote the image of x in $\mathbb{Q}[x]/(x^3 + 3x + 3)$. Express each of $1/\alpha, 1/(1+\alpha), 1/(1+\alpha^2)$ in the form $c_2\alpha^2 + c_1\alpha + c_0$ with $c_0, c_2, c_2 \in \mathbb{Q}$.
- 2. (a) Write down the 4 possible degree 2 polynomials in $\mathbb{F}_2[x]$. Which are irreducibe?
 - (b) Show that if f(x) is a degree 4 polynomial which is reducible, then it either has a root or can be factored as a product of two irreducible quadratics.
 - (c) Show that $x^4 + x + 1$ is irreducible in \mathbb{F}_2 .
 - (d) Show that $5x^4 + 3x + 7$ is irreducible in $\mathbb{Q}[x]$.
- 3. Show that the following are irreducible in $\mathbb{Q}[x]$.
 - (a) $2x^4 + 15x^2 + 10$.
 - (b) $x^6 + x^3 + 1$.
 - (c) $x^4 + 4x^3 + 6x^2 + 6x + 5$.
- 4. Let L/K be a field extension where [L:K] is prime.
 - (a) Show that there are no fields M such that $K \subset M \subset L$.
 - (b) Show that L/K is a simple extension.
- 5. The formal derivative $D: K[x] \to K[x]$ is defined by $D(a_0 + a_1x + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1}$. Prove that if $a, b \in K$ and $f, g \in K[x]$ then
 - (a) D(af + bg) = aDf + bDg;

- (b) D(fg) = fDg + gDf;
- (c) Dh(x) = Dg(x)Df(g(x)) when h(x) = f(g(x)). If $a \in K$ show that
- (d) (x-a) divides f(x) in K[x] if and only if f(a) = 0;
- (e) $(x-a)^2$ divides f(x) in K[x] if and only if f(a) = 0 = Df(a).

Deduce that if the polynomials f and Df have no common factors in K[x], then f has no multiple root.