Sheet 3: Splitting fields, normal and separable extensions.

Robert Kropholler

February 22, 2019

- 1. Show that if L/K is a finite degree extension, then every element of L is algebraic over K.
- 2. Let α, β be algebraic over \mathbb{Q} . Show that $\alpha \beta, \alpha\beta, \alpha^{-1}$ are all algebraic over \mathbb{Q} .
- 3. Let $\overline{\mathbb{Q}} = \{ \alpha \mid \alpha \text{ is algebraic over } \mathbb{Q} \}$, this is the *algebraic closure of* \mathbb{Q} . Using the above or otherwise show that $\overline{\mathbb{Q}}$ is a field.
- 4. Suppose that K is a finite extension of \mathbb{Q} and that α is algebraic over K. Use the tower law to show that α is algebraic over \mathbb{Q} .
- 5. We say that a field L is algebraically closed if given any polynomial with coefficients in L has a root in L. Deduce that $\overline{\mathbb{Q}}$ is algebraically closed.
- 6. It is unknown whether $e + \pi$ or $e\pi$ are transcendental numbers. Prove that at least one of them is.
- 7. Show that $\overline{\mathbb{Q}}$ is not a finite extension of \mathbb{Q} .
- 8. By considering the polynomial $ax^2 b$ or otherwise.
 - (a) Show that if $b \neq n^2$ for any integer n. Then \sqrt{b} is irrational.
 - (b) Show that if a and b are coprime integers and $a, b \neq n^2$ for any integer n, then $\sqrt{a} \notin \mathbb{Q}(\sqrt{b})$.
- 9. Find the splitting field and the degree over \mathbb{Q} for each of the following:
 - (a) $(x^2 2)(x^2 5)$
 - (b) $x^3 2$
 - (c) $x^4 2$
- 10. Let M/L, L/K be field extensions. Find a counter example for each of the following.
 - (a) If M/L and M/K are normal, then L/K normal.
 - (b) If L/K is normal, then M/L normal.
 - (c) If L/K is normal, then M/K normal.